BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 31984393)

  • 21. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip.
    Bsoul A; Pan S; Cretu E; Stoeber B; Walus K
    Lab Chip; 2016 Aug; 16(17):3351-61. PubMed ID: 27444216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel fabrication technique to minimize poly(dimethylsiloxane)-microchannels deformation under high-pressure operation.
    Madadi H; Mohammadi M; Casals-Terré J; López RC
    Electrophoresis; 2013 Dec; 34(22-23):3126-32. PubMed ID: 24114728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices.
    Beauchamp MJ; Nordin GP; Woolley AT
    Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic devices manufacturing with a stereolithographic printer for biological applications.
    Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer.
    Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW
    Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering 3D parallelized microfluidic droplet generators with equal flow profiles by computational fluid dynamics and stereolithographic printing.
    Kamperman T; Teixeira LM; Salehi SS; Kerckhofs G; Guyot Y; Geven M; Geris L; Grijpma D; Blanquer S; Leijten J
    Lab Chip; 2020 Feb; 20(3):490-495. PubMed ID: 31841123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles.
    Kang E; Shin SJ; Lee KH; Lee SH
    Lab Chip; 2010 Jul; 10(14):1856-61. PubMed ID: 20454720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silica-on-silicon waveguide integrated polydimethylsiloxane lab-on-a-chip for quantum dot fluorescence bio-detection.
    Ozhikandathil J; Packirisamy M
    J Biomed Opt; 2012 Jan; 17(1):017006. PubMed ID: 22352672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The revolution of PDMS microfluidics in cellular biology.
    Banik S; Uchil A; Kalsang T; Chakrabarty S; Ali MA; Srisungsitthisunti P; Mahato KK; Surdo S; Mazumder N
    Crit Rev Biotechnol; 2023 May; 43(3):465-483. PubMed ID: 35410564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
    Cole RH; Tran TM; Abate AR
    J Vis Exp; 2015 Dec; (106):e53516. PubMed ID: 26780079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices.
    Shafique H; Karamzadeh V; Kim G; Shen ML; Morocz Y; Sohrabi-Kashani A; Juncker D
    Lab Chip; 2024 May; 24(10):2774-2790. PubMed ID: 38682609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PolyJet 3D-Printed Enclosed Microfluidic Channels without Photocurable Supports.
    Castiaux AD; Pinger CW; Hayter EA; Bunn ME; Martin RS; Spence DM
    Anal Chem; 2019 May; 91(10):6910-6917. PubMed ID: 31035747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing.
    Dungchai W; Chailapakul O; Henry CS
    Analyst; 2011 Jan; 136(1):77-82. PubMed ID: 20871884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
    Li X; Wang M; Davis TP; Zhang L; Qiao R
    Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complex three-dimensional microparticles from microfluidic lithography.
    Tian Y; Wang L
    Electrophoresis; 2020 Sep; 41(16-17):1491-1502. PubMed ID: 32012294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.