BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 31984728)

  • 1. Hydrophobization of Cellulose Nanocrystals for Aqueous Colloidal Suspensions and Gels.
    Nigmatullin R; Johns MA; Muñoz-García JC; Gabrielli V; Schmitt J; Angulo J; Khimyak YZ; Scott JL; Edler KJ; Eichhorn SJ
    Biomacromolecules; 2020 May; 21(5):1812-1823. PubMed ID: 31984728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals.
    Azzam F; Siqueira E; Fort S; Hassaini R; Pignon F; Travelet C; Putaux JL; Jean B
    Biomacromolecules; 2016 Jun; 17(6):2112-9. PubMed ID: 27116589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobized cellulose nanocrystals enhance xanthan and locust bean gum network properties in gels and emulsions.
    Nigmatullin R; Johns MA; Eichhorn SJ
    Carbohydr Polym; 2020 Dec; 250():116953. PubMed ID: 33049858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Frequency Ultrasound Effects on Cellulose Nanocrystals for Potential Application in Stabilizing Pickering Emulsions.
    Perrin L; Desobry S; Gillet G; Desobry-Banon S
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of surface properties of cellulose nanocrystals through adsorption of tannic acid and alkyl cellulose derivatives.
    D'Acierno F; Capron I
    Carbohydr Polym; 2023 Nov; 319():121159. PubMed ID: 37567688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically Robust Gels Formed from Hydrophobized Cellulose Nanocrystals.
    Nigmatullin R; Harniman R; Gabrielli V; Muñoz-García JC; Khimyak YZ; Angulo J; Eichhorn SJ
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19318-19322. PubMed ID: 29790733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking Cellulose Nanocrystals Part II: New Industrially Produced Materials.
    Delepierre G; Vanderfleet OM; Niinivaara E; Zakani B; Cranston ED
    Langmuir; 2021 Jul; 37(28):8393-8409. PubMed ID: 34250804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.
    Hu Z; Ballinger S; Pelton R; Cranston ED
    J Colloid Interface Sci; 2015 Feb; 439():139-48. PubMed ID: 25463186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
    Kan KH; Li J; Wijesekera K; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Reaction Media on Grafting Hydrophobic Polymers from Cellulose Nanocrystals
    Kiriakou MV; Berry RM; Hoare T; Cranston ED
    Biomacromolecules; 2021 Aug; 22(8):3601-3612. PubMed ID: 34252279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of cellulose nanocrystals of different lengths.
    Raghuwanshi VS; Browne C; Batchelor W; Garnier G
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):249-259. PubMed ID: 36327727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating the chiral nanoarchitecture of cellulose nanocrystals through interaction with salts and polymer.
    Lin M; Singh Raghuwanshi V; Browne C; Simon GP; Garnier G
    J Colloid Interface Sci; 2022 May; 613():207-217. PubMed ID: 35033766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal stability of cellulose nanocrystals in aqueous solutions containing monovalent, divalent, and trivalent inorganic salts.
    Cao T; Elimelech M
    J Colloid Interface Sci; 2021 Feb; 584():456-463. PubMed ID: 33091869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of interparticle interactions on microstructural and rheological properties of cellulose nanocrystal stabilized emulsions.
    Pandey A; Derakhshandeh M; Kedzior SA; Pilapil B; Shomrat N; Segal-Peretz T; Bryant SL; Trifkovic M
    J Colloid Interface Sci; 2018 Dec; 532():808-818. PubMed ID: 30144751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions.
    Lewis L; Derakhshandeh M; Hatzikiriakos SG; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2016 Aug; 17(8):2747-54. PubMed ID: 27467200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose Nanocrystal (CNC)-Latex Nanocomposites: Effect of CNC Hydrophilicity and Charge on Rheological, Mechanical, and Adhesive Properties.
    Pakdel AS; Niinivaara E; Cranston ED; Berry RM; Dubé MA
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000448. PubMed ID: 33047439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze-Thaw Gelation of Cellulose Nanocrystals.
    Lewis L; Hatzikiriakos SG; Hamad WY; MacLachlan MJ
    ACS Macro Lett; 2019 May; 8(5):486-491. PubMed ID: 35619375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent Crosslinking of Colloidal Cellulose Nanocrystals for Multifunctional Nanostructured Hydrogels with Tunable Physicochemical Properties.
    Batta-Mpouma J; Kandhola G; Sakon J; Kim JW
    Biomacromolecules; 2022 Oct; 23(10):4085-4096. PubMed ID: 36166819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient, Self-Terminating Isolation of Cellulose Nanocrystals through Periodate Oxidation in Pickering Emulsions.
    Liu P; Pang B; Tian L; Schäfer T; Gutmann T; Liu H; Volkert CA; Buntkowsky G; Zhang K
    ChemSusChem; 2018 Oct; 11(20):3581-3585. PubMed ID: 30126073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose Nanocrystal Aqueous Colloidal Suspensions: Evidence of Density Inversion at the Isotropic-Liquid Crystal Phase Transition.
    da Rosa RR; Silva PES; Saraiva DV; Kumar A; de Sousa APM; Sebastião P; Fernandes SN; Godinho MH
    Adv Mater; 2022 Jul; 34(28):e2108227. PubMed ID: 35502142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.