These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31984729)

  • 1. Increasing the Efficiency of Photocatalytic Reactions via Surface Microenvironment Engineering.
    Zhou H; Sheng X; Xiao J; Ding Z; Wang D; Zhang X; Liu J; Wu R; Feng X; Jiang L
    J Am Chem Soc; 2020 Feb; 142(6):2738-2743. PubMed ID: 31984729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-phase interface photocatalysis for the enhanced degradation and antibacterial property.
    Tang Y; Qin Z; Zhong Y; Yin S; Liang S; Sun H
    J Colloid Interface Sci; 2022 Apr; 612():194-202. PubMed ID: 34992019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Photocatalytic Reaction at Air-Liquid-Solid Joint Interfaces.
    Sheng X; Liu Z; Zeng R; Chen L; Feng X; Jiang L
    J Am Chem Soc; 2017 Sep; 139(36):12402-12405. PubMed ID: 28853557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Hydrogen Peroxide Generation Utilizing Photocatalytic Oxygen Reduction at a Triphase Interface.
    Liu Z; Sheng X; Wang D; Feng X
    iScience; 2019 Jul; 17():67-73. PubMed ID: 31255984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green Approach for Metal Oxide Deposition at an Air-Liquid-Solid Triphase Interface with Enhanced Photocatalytic Activity.
    Zhu A; Zhang J; Guan F; Tang H; Feng X
    ACS Omega; 2019 Feb; 4(2):3534-3538. PubMed ID: 31459567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a Hollow Carbon Sphere-Based Triphase Microenvironment for Enhanced Enzymatic Reaction Kinetics and Bioassay Performance.
    Li X; Wang D; Ding Z; Chen X; Chen L; Ni W; Feng X
    Small; 2023 Oct; 19(43):e2302634. PubMed ID: 37376867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions.
    Kisch H
    Acc Chem Res; 2017 Apr; 50(4):1002-1010. PubMed ID: 28378591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobicity Promoted Efficient Hydroxyl Radical Generation in Visible-Light-Driven Photocatalytic Oxidation.
    Chen X; Sheng X; Zhou H; Liu Z; Xu M; Feng X
    Small; 2024 Jun; 20(24):e2310128. PubMed ID: 38174635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photothermal-Assisted Triphase Photocatalysis Over a Multifunctional Bilayer Paper.
    Huang H; Shi R; Zhang X; Zhao J; Su C; Zhang T
    Angew Chem Int Ed Engl; 2021 Oct; 60(42):22963-22969. PubMed ID: 34374187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Photoelectrochemical Enzymatic Bioanalysis Based on a 3D Porous Cu
    Cheng H; Wang D; Chen L; Ding Z; Feng X
    Langmuir; 2022 Dec; 38(50):15796-15803. PubMed ID: 36469434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-range hydrophobic force enhanced interfacial photocatalysis for the submerged surface anti-biofouling.
    Pan S; Lu D; Gan H; Zhu DZ; Yao Z; Kurup PU; Zhang G; Luo J
    Water Res; 2023 Sep; 243():120383. PubMed ID: 37506635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced catalytic reaction at an air-liquid-solid triphase interface.
    Chen L; Feng X
    Chem Sci; 2020 Mar; 11(12):3124-3131. PubMed ID: 34122816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An N,N'-dialkyl-4,4'-bipyridinium-modified titanium-dioxide photocatalyst for water remediation--observation and application of supramolecular effects in photocatalytic degradation of pi-donor organic compounds.
    Bossmann SH; Göb S; Siegenthaler T; Braun AM; Ranjit KT; Willner I
    Fresenius J Anal Chem; 2001 Nov; 371(5):621-8. PubMed ID: 11767888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of clay--TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant.
    Kibanova D; Cervini-Silva J; Destaillats H
    Environ Sci Technol; 2009 Mar; 43(5):1500-6. PubMed ID: 19350926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoting Photodegradation Efficiency via a Heterojunction Photocatalyst Combining with Oxygen Direct and Fast Diffusion from the Gas Phase to Active Catalytic Sites.
    Shao F; Mi L; Tian Z; Zheng C; Zhang Y; Li Q; Liu S
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44922-44930. PubMed ID: 31697058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced efficient molecular oxygen activation on a Cu(II)-grafted TiO2/graphene photocatalyst for phenol degradation.
    Zhang H; Guo LH; Wang D; Zhao L; Wan B
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1816-23. PubMed ID: 25556692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe2 O3 -TiO2 nanocomposites for enhanced charge separation and photocatalytic activity.
    Moniz SJ; Shevlin SA; An X; Guo ZX; Tang J
    Chemistry; 2014 Nov; 20(47):15571-9. PubMed ID: 25280047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst.
    Kim JR; Kan E
    J Environ Manage; 2016 Sep; 180():94-101. PubMed ID: 27213862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic Effect of Dual Electron-Cocatalysts for Enhanced Photocatalytic Activity: rGO as Electron-Transfer Mediator and Fe(III) as Oxygen-Reduction Active Site.
    Yu H; Tian J; Chen F; Wang P; Wang X
    Sci Rep; 2015 Aug; 5():13083. PubMed ID: 26272870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst.
    Kim SB; Hwang HT; Hong SC
    Chemosphere; 2002 Jul; 48(4):437-44. PubMed ID: 12152746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.