These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Identification of Novel Antileishmanial Chemotypes By High-Throughput Virtual and In Vitro Screening. Khan H; Hakami MA; Alamri MA; Alotaibi BS; Ullah N; Khan R; Khalid A; Abdalla AN; Wadood A Acta Parasitol; 2024 Sep; 69(3):1439-1457. PubMed ID: 39150581 [TBL] [Abstract][Full Text] [Related]
5. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation. Pandey RK; Kumbhar BV; Srivastava S; Malik R; Sundar S; Kunwar A; Prajapati VK J Biomol Struct Dyn; 2017 Jan; 35(1):141-158. PubMed ID: 27043972 [TBL] [Abstract][Full Text] [Related]
6. Targeting Trypanothione Reductase of Leishmanial major to Fight Against Cutaneous Leishmaniasis. Dukhyil AAAB Infect Disord Drug Targets; 2019; 19(4):388-393. PubMed ID: 29732996 [TBL] [Abstract][Full Text] [Related]
7. Structure-guided approach to identify a novel class of anti-leishmaniasis diaryl sulfide compounds targeting the trypanothione metabolism. Colotti G; Saccoliti F; Gramiccia M; Di Muccio T; Prakash J; Yadav S; Dubey VK; Vistoli G; Battista T; Mocci S; Fiorillo A; Bibi A; Madia VN; Messore A; Costi R; Di Santo R; Ilari A Amino Acids; 2020 Feb; 52(2):247-259. PubMed ID: 31037461 [TBL] [Abstract][Full Text] [Related]
8. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase. Ortalli M; Ilari A; Colotti G; De Ionna I; Battista T; Bisi A; Gobbi S; Rampa A; Di Martino RMC; Gentilomi GA; Varani S; Belluti F Eur J Med Chem; 2018 May; 152():527-541. PubMed ID: 29758517 [TBL] [Abstract][Full Text] [Related]
9. Anti-leishmanial and cytotoxic activities of amino acid-triazole hybrids: Synthesis, biological evaluation, molecular docking and in silico physico-chemical properties. Masood MM; Hasan P; Tabrez S; Ahmad MB; Yadava U; Daniliuc CG; Sonawane YA; Azam A; Rub A; Abid M Bioorg Med Chem Lett; 2017 May; 27(9):1886-1891. PubMed ID: 28359789 [TBL] [Abstract][Full Text] [Related]
10. Trypanothione reductase from Leishmania donovani. Purification, characterisation and inhibition by trivalent antimonials. Cunningham ML; Fairlamb AH Eur J Biochem; 1995 Jun; 230(2):460-8. PubMed ID: 7607216 [TBL] [Abstract][Full Text] [Related]
11. Insights about resveratrol analogs against trypanothione reductase of da Silva AD; Dos Santos JA; Machado PA; Alves LA; Laque LC; de Souza VC; Coimbra ES; Capriles PVSZ J Biomol Struct Dyn; 2019 Jul; 37(11):2960-2969. PubMed ID: 30058445 [TBL] [Abstract][Full Text] [Related]
12. Bioassay-based Corchorus capsularis L. leaf-derived β-sitosterol exerts antileishmanial effects against Leishmania donovani by targeting trypanothione reductase. Pramanik PK; Chakraborti S; Bagchi A; Chakraborti T Sci Rep; 2020 Nov; 10(1):20440. PubMed ID: 33235245 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of a diospyrin derivative as antileishmanial agent and potential modulator of ornithine decarboxylase of Leishmania donovani. Hazra S; Ghosh S; Das Sarma M; Sharma S; Das M; Saudagar P; Prajapati VK; Dubey VK; Sundar S; Hazra B Exp Parasitol; 2013 Oct; 135(2):407-13. PubMed ID: 23973194 [TBL] [Abstract][Full Text] [Related]
14. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. Chan C; Yin H; Garforth J; McKie JH; Jaouhari R; Speers P; Douglas KT; Rock PJ; Yardley V; Croft SL; Fairlamb AH J Med Chem; 1998 Jan; 41(2):148-56. PubMed ID: 9457238 [TBL] [Abstract][Full Text] [Related]
15. Repurposing Glyburide as Antileishmanial Agent to Fight Against Leishmaniasis. Rub A; Shaker K; Kashif M; Arish M; Dukhyil AAB; Alshehri BM; Alaidarous MA; Banawas S; Amir K Protein Pept Lett; 2019; 26(5):371-376. PubMed ID: 30827222 [TBL] [Abstract][Full Text] [Related]
17. Structure-based drug designing against Sarma M; Borkotoky S; Dubey VK J Biomol Struct Dyn; 2024 Sep; 42(14):7628-7636. PubMed ID: 37491862 [TBL] [Abstract][Full Text] [Related]
18. Glutathione and the redox control system trypanothione/trypanothione reductase are involved in the protection of Leishmania spp. against nitrosothiol-induced cytotoxicity. Romão PR; Tovar J; Fonseca SG; Moraes RH; Cruz AK; Hothersall JS; Noronha-Dutra AA; Ferreira SH; Cunha FQ Braz J Med Biol Res; 2006 Mar; 39(3):355-63. PubMed ID: 16501815 [TBL] [Abstract][Full Text] [Related]
19. Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening. Turcano L; Torrente E; Missineo A; Andreini M; Gramiccia M; Di Muccio T; Genovese I; Fiorillo A; Harper S; Bresciani A; Colotti G; Ilari A PLoS Negl Trop Dis; 2018 Nov; 12(11):e0006969. PubMed ID: 30475811 [TBL] [Abstract][Full Text] [Related]
20. Peptoid inhibition of trypanothione reductase as a potential antitrypanosomal and antileishmanial drug lead. Chan C; Yin H; McKie JH; Fairlamb AH; Douglas KT Amino Acids; 2002 Jun; 22(4):297-308. PubMed ID: 12107758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]