These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 31984916)

  • 1. The Preparation Methods and Processing of Natural Fibre Bio-polymer Composites.
    Ilyas RA; Sapuan SM
    Curr Org Synth; 2019; 16(8):1068-1070. PubMed ID: 31984916
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites.
    Liu Y; Lv X; Bao J; Xie J; Tang X; Che J; Ma Y; Tong J
    Carbohydr Polym; 2019 Aug; 218():179-187. PubMed ID: 31221319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer composites in 2000: structure, performance, cost and compromise.
    Bader MG
    J Microsc; 2001 Feb; 201(2):110-121. PubMed ID: 11207913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocellulose composites with enhanced interfacial compatibility and mechanical properties using a hybrid-toughened epoxy matrix.
    Kuo PY; Barros LA; Yan N; Sain M; Qing Y; Wu Y
    Carbohydr Polym; 2017 Dec; 177():249-257. PubMed ID: 28962766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focused ion beam preparation techniques dedicated for the fabrication of TEM lamellae of fibre-reinforced composites.
    Mucha H; Kato T; Arai S; Saka H; Kuroda K; Wielage B
    J Electron Microsc (Tokyo); 2005 Jan; 54(1):43-9. PubMed ID: 15695484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review on hygroscopic aging of cellulose fibres and their biocomposites.
    Mokhothu TH; John MJ
    Carbohydr Polym; 2015 Oct; 131():337-54. PubMed ID: 26256193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties.
    Chen M; Parsons AJ; Felfel RM; Rudd CD; Irvine DJ; Ahmed I
    J Mech Behav Biomed Mater; 2016 Jun; 59():78-89. PubMed ID: 26748261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water sorption, solubility and effect of post-curing of glass fibre reinforced polymers.
    Miettinen VM; Narva KK; Vallittu PK
    Biomaterials; 1999 Jul; 20(13):1187-94. PubMed ID: 10395387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for estimating the fibre length in fibre-PLA composites.
    Chinga-Carrasco G; Solheim O; Lenes M; Larsen A
    J Microsc; 2013 Apr; 250(1):15-20. PubMed ID: 23339585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing and characterization of natural cellulose fibers/thermoset polymer composites.
    Thakur VK; Thakur MK
    Carbohydr Polym; 2014 Aug; 109():102-17. PubMed ID: 24815407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-based coatings for reducing water sorption in natural fibre reinforced composites.
    Mokhothu TH; John MJ
    Sci Rep; 2017 Oct; 7(1):13335. PubMed ID: 29042672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an In-situ Polymerizable Cyclic Oligoester.
    Jang JU; Park HC; Lee HS; Khil MS; Kim SY
    Sci Rep; 2018 May; 8(1):7659. PubMed ID: 29769569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization.
    M R S; Siengchin S; Parameswaranpillai J; Jawaid M; Pruncu CI; Khan A
    Carbohydr Polym; 2019 Mar; 207():108-121. PubMed ID: 30599990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional gradients in the pericarp of the green coconut inspire asymmetric fibre-composites with improved impact strength, and preserved flexural and tensile properties.
    Graupner N; Labonte D; Humburg H; Buzkan T; Dörgens A; Kelterer W; Müssig J
    Bioinspir Biomim; 2017 Feb; 12(2):026009. PubMed ID: 28245197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing the microstructure and mechanical properties of Bombyx mori and Antheraea pernyi cocoon composites.
    Guan J; Zhu W; Liu B; Yang K; Vollrath F; Xu J
    Acta Biomater; 2017 Jan; 47():60-70. PubMed ID: 27693687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling of woven carbon-fibre-reinforced polymer composites using supercritical water.
    Knight CC; Zeng C; Zhang C; Wang B
    Environ Technol; 2012; 33(4-6):639-44. PubMed ID: 22629638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring Pre-Stressed Composites Using Optical Fibre Sensors.
    Krishnamurthy S; Badcock RA; Machavaram VR; Fernando GF
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Durability and integrity studies of environmentally conditioned interfaces in fibrous polymeric composites: critical concepts and comments.
    Ray BC; Rathore D
    Adv Colloid Interface Sci; 2014 Jul; 209():68-83. PubMed ID: 24484896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application.
    Iqbal HM; Kyazze G; Locke IC; Tron T; Keshavarz T
    Int J Biol Macromol; 2015 Nov; 81():552-9. PubMed ID: 26314909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Mechanical and Interfacial Properties of Bio-Composites Based on Poly(Lactic Acid) with Natural Cellulose Fibers.
    Aliotta L; Gigante V; Coltelli MB; Cinelli P; Lazzeri A
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30813291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.