BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31985038)

  • 41. Decreased expression of the cystic fibrosis transmembrane conductance regulator protein in remodeled airway epithelium from lung transplanted patients.
    Brézillon S; Hamm H; Heilmann M; Schäfers HJ; Hinnrasky J; Wagner TO; Puchelle E; Tümmler B
    Hum Pathol; 1997 Aug; 28(8):944-52. PubMed ID: 9269831
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lung pathology in response to repeated exposure to Staphylococcus aureus in congenic residual function cystic fibrosis mice does not increase in response to decreased CFTR levels or increased bacterial load.
    Davidson DJ; Webb S; Teague P; Govan JR; Dorin JR
    Pathobiology; 2004; 71(3):152-8. PubMed ID: 15051928
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mouse models of chronic lung infection with Pseudomonas aeruginosa: models for the study of cystic fibrosis.
    Stotland PK; Radzioch D; Stevenson MM
    Pediatr Pulmonol; 2000 Nov; 30(5):413-24. PubMed ID: 11064433
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microtubule assembly affects bone mass by regulating both osteoblast and osteoclast functions: stathmin deficiency produces an osteopenic phenotype in mice.
    Liu H; Zhang R; Ko SY; Oyajobi BO; Papasian CJ; Deng HW; Zhang S; Zhao M
    J Bone Miner Res; 2011 Sep; 26(9):2052-67. PubMed ID: 21557310
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of osteoblast-targeted expression of bcl-2 in bone: differential response in male and female mice.
    Pantschenko AG; Zhang W; Nahounou M; McCarthy MB; Stover ML; Lichtler AC; Clark SH; Gronowicz GA
    J Bone Miner Res; 2005 Aug; 20(8):1414-29. PubMed ID: 16007339
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cystic fibrosis transmembrane conductance regulator mediates tenogenic differentiation of tendon-derived stem cells and tendon repair: accelerating tendon injury healing by intervening in its downstream signaling.
    Liu Y; Xu J; Xu L; Wu T; Sun Y; Lee YW; Wang B; Chan HC; Jiang X; Zhang J; Li G
    FASEB J; 2017 Sep; 31(9):3800-3815. PubMed ID: 28495756
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Loss of p62 impairs bone turnover and inhibits PTH-induced osteogenesis.
    Agas D; Amaroli A; Lacava G; Yanagawa T; Sabbieti MG
    J Cell Physiol; 2020 Oct; 235(10):7516-7529. PubMed ID: 32100883
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The ΔF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Is Associated With Progressive Insulin Resistance and Decreased Functional β-Cell Mass in Mice.
    Fontés G; Ghislain J; Benterki I; Zarrouki B; Trudel D; Berthiaume Y; Poitout V
    Diabetes; 2015 Dec; 64(12):4112-22. PubMed ID: 26283735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The HDAC inhibitor SAHA does not rescue CFTR membrane expression in Cystic Fibrosis.
    Bergougnoux A; Petit A; Knabe L; Bribes E; Chiron R; De Sario A; Claustres M; Molinari N; Vachier I; Taulan-Cadars M; Bourdin A
    Int J Biochem Cell Biol; 2017 Jul; 88():124-132. PubMed ID: 28478266
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CFTR inhibition mimics the cystic fibrosis inflammatory profile.
    Perez A; Issler AC; Cotton CU; Kelley TJ; Verkman AS; Davis PB
    Am J Physiol Lung Cell Mol Physiol; 2007 Feb; 292(2):L383-95. PubMed ID: 16920886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Small intestinal glucose absorption in cystic fibrosis: a study in human and transgenic DeltaF508 cystic fibrosis mouse tissues.
    Hardcastle J; Harwood MD; Taylor CJ
    J Pharm Pharmacol; 2004 Mar; 56(3):329-38. PubMed ID: 15025858
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lung arginase expression and activity is increased in cystic fibrosis mouse models.
    Jaecklin T; Duerr J; Huang H; Rafii M; Bear CE; Ratjen F; Pencharz P; Kavanagh BP; Mall MA; Grasemann H
    J Appl Physiol (1985); 2014 Aug; 117(3):284-8. PubMed ID: 24925982
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nrp2 deficiency leads to trabecular bone loss and is accompanied by enhanced osteoclast and reduced osteoblast numbers.
    Verlinden L; Kriebitzsch C; Beullens I; Tan BK; Carmeliet G; Verstuyf A
    Bone; 2013 Aug; 55(2):465-75. PubMed ID: 23598046
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A delta F508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo.
    French PJ; van Doorninck JH; Peters RH; Verbeek E; Ameen NA; Marino CR; de Jonge HR; Bijman J; Scholte BJ
    J Clin Invest; 1996 Sep; 98(6):1304-12. PubMed ID: 8823295
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ursodeoxycholate modulates bile flow and bile salt pool independently from the cystic fibrosis transmembrane regulator (Cftr) in mice.
    Bodewes FA; Wouthuyzen-Bakker M; Bijvelds MJ; Havinga R; de Jonge HR; Verkade HJ
    Am J Physiol Gastrointest Liver Physiol; 2012 May; 302(9):G1035-42. PubMed ID: 22301109
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rectal potential difference and the functional expression of CFTR in the gastrointestinal epithelia in cystic fibrosis mouse models.
    Weiner SA; Caputo C; Bruscia E; Ferreira EC; Price JE; Krause DS; Egan ME
    Pediatr Res; 2008 Jan; 63(1):73-8. PubMed ID: 18043508
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potentiation of the cystic fibrosis transmembrane conductance regulator Cl
    Wang Y; Cai Z; Gosling M; Sheppard DN
    Am J Physiol Lung Cell Mol Physiol; 2018 Nov; 315(5):L846-L857. PubMed ID: 30136610
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(-/-) mice.
    Clarke LL; Grubb BR; Yankaskas JR; Cotton CU; McKenzie A; Boucher RC
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):479-83. PubMed ID: 7507247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Galectin-3 as a novel regulator of osteoblast-osteoclast interaction and bone homeostasis.
    Simon D; Derer A; Andes FT; Lezuo P; Bozec A; Schett G; Herrmann M; Harre U
    Bone; 2017 Dec; 105():35-41. PubMed ID: 28822790
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CFTR Deletion Confers Mitochondrial Dysfunction and Disrupts Lipid Homeostasis in Intestinal Epithelial Cells.
    Kleme ML; Sané A; Garofalo C; Seidman E; Brochiero E; Berthiaume Y; Levy E
    Nutrients; 2018 Jun; 10(7):. PubMed ID: 29954133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.