These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31985063)

  • 1. High-resolution imaging of organic pharmaceutical crystals by transmission electron microscopy and scanning moiré fringes.
    S'ari M; Koniuch N; Brydson R; Hondow N; Brown A
    J Microsc; 2020 Sep; 279(3):197-206. PubMed ID: 31985063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low dose scanning transmission electron microscopy of organic crystals by scanning moiré fringes.
    S'ari M; Cattle J; Hondow N; Brydson R; Brown A
    Micron; 2019 May; 120():1-9. PubMed ID: 30739878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Developing a Predictive Approach To Assess Electron Beam Instability during Transmission Electron Microscopy of Drug Molecules.
    S'ari M; Blade H; Brydson R; Cosgrove SD; Hondow N; Hughes LP; Brown A
    Mol Pharm; 2018 Nov; 15(11):5114-5123. PubMed ID: 30212216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining moiré patterns and high resolution transmission electron microscopy for in-plane thin films thickness determination.
    Valamanesh M; Langlois C; Alloyeau D; Lacaze E; Ricolleau C
    Ultramicroscopy; 2011 Jan; 111(2):149-54. PubMed ID: 21185459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast determination of sample thickness through scanning moiré fringes in scanning transmission electron microscopy.
    Nan P; Liang Z; Zhang Y; Liu Y; Song D; Ge B
    Micron; 2022 Apr; 155():103230. PubMed ID: 35189548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal lattice image reconstruction from Moiré sampling scanning transmission electron microscopy.
    Pofelski A; Bicket I; Botton GA
    Ultramicroscopy; 2022 Mar; 233():113426. PubMed ID: 34847447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sampling optimization of Moiré geometrical phase analysis for strain characterization in scanning transmission electron microscopy.
    Pofelski A; Ghanad-Tavakoli S; Thompson DA; Botton GA
    Ultramicroscopy; 2020 Feb; 209():112858. PubMed ID: 31884380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moiré fringe imaging of heterostructures by scanning transmission electron microscopy.
    Hu WT; Tian M; Wang YJ; Zhu YL
    Micron; 2024 Oct; 185():103679. PubMed ID: 38924906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of crystallographic strain, rotation and defects in functional oxides by the moiré effect in scanning transmission electron microscopy.
    Naden AB; O'Shea KJ; MacLaren DA
    Nanotechnology; 2018 Apr; 29(16):165704. PubMed ID: 29485106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative mapping of strain and displacement fields over HR-TEM and HR-STEM images of crystals with reference to a virtual lattice.
    Cherkashin N; Louiset A; Chmielewski A; Kim DJ; Dubourdieu C; Schamm-Chardon S
    Ultramicroscopy; 2023 Nov; 253():113778. PubMed ID: 37329809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical analysis of support thickness and particle size effects in HRTEM imaging of metal nanoparticles.
    House SD; Bonifacio CS; Grieshaber RV; Li L; Zhang Z; Ciston J; Stach EA; Yang JC
    Ultramicroscopy; 2016 Oct; 169():22-29. PubMed ID: 27421079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic evolution mechanism of scanning moiré fringes.
    Liu Y; Nan P; Lin Y; Liang Z; Song D; Wang Y; Ge B
    Ultramicroscopy; 2023 Jul; 249():113731. PubMed ID: 37043992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and analysis of nanowires.
    Bell DC; Wu Y; Barrelet CJ; Gradecak S; Xiang J; Timko BP; Lieber CM
    Microsc Res Tech; 2004 Aug; 64(5-6):373-89. PubMed ID: 15549698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thin dielectric film thickness determination by advanced transmission electron microscopy.
    Diebold AC; Foran B; Kisielowski C; Muller DA; Pennycook SJ; Principe E; Stemmer S
    Microsc Microanal; 2003 Dec; 9(6):493-508. PubMed ID: 14750984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First observation of In(x)Ga(1-x)As quantum dots in GaP by spherical-aberration-corrected HRTEM in comparison with ADF-STEM and conventional HRTEM.
    Tanaka N; Yamasaki J; Fuchi S; Takeda Y
    Microsc Microanal; 2004 Feb; 10(1):139-45. PubMed ID: 15306078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning moiré fringe imaging by scanning transmission electron microscopy.
    Su D; Zhu Y
    Ultramicroscopy; 2010 Feb; 110(3):229-33. PubMed ID: 20006440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choice of operating voltage for a transmission electron microscope.
    Egerton RF
    Ultramicroscopy; 2014 Oct; 145():85-93. PubMed ID: 24679438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2D strain mapping using scanning transmission electron microscopy Moiré interferometry and geometrical phase analysis.
    Pofelski A; Woo SY; Le BH; Liu X; Zhao S; Mi Z; Löffler S; Botton GA
    Ultramicroscopy; 2018 Apr; 187():1-12. PubMed ID: 29413406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TEM nano-Moiré evaluation for an invisible lattice structure near the grain interface.
    Zhang H; Wen H; Liu Z; Zhang Q; Xie H
    Nanoscale; 2017 Oct; 9(41):15923-15933. PubMed ID: 29019497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.
    Sun C; Müller E; Meffert M; Gerthsen D
    Microsc Microanal; 2018 Apr; 24(2):99-106. PubMed ID: 29589573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.