These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 31985111)

  • 1. Phenological responses in a sycamore-aphid-parasitoid system and consequences for aphid population dynamics: A 20 year case study.
    Senior VL; Evans LC; Leather SR; Oliver TH; Evans KL
    Glob Chang Biol; 2020 May; 26(5):2814-2828. PubMed ID: 31985111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hymenopteran Parasitoids of Aphid Pests within Australian Grain Production Landscapes.
    Ward SE; Umina PA; Macfadyen S; Hoffmann AA
    Insects; 2021 Jan; 12(1):. PubMed ID: 33430084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are aphid parasitoids from mild winter climates losing their winter diapause?
    Tougeron K; Le Lann C; Brodeur J; van Baaren J
    Oecologia; 2017 Mar; 183(3):619-629. PubMed ID: 27868159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids.
    Bell JR; Alderson L; Izera D; Kruger T; Parker S; Pickup J; Shortall CR; Taylor MS; Verrier P; Harrington R
    J Anim Ecol; 2015 Jan; 84(1):21-34. PubMed ID: 25123260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative importance of long-term changes in climate and land-use on the phenology and abundance of legume crop specialist and generalist aphids.
    Luquet M; Hullé M; Simon JC; Parisey N; Buchard C; Jaloux B
    Insect Sci; 2019 Oct; 26(5):881-896. PubMed ID: 29513406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of simulated climate warming on the population dynamics of Sitobion avenae (Fabricius) and its parasitoids in wheat fields.
    Han Z; Tan X; Wang Y; Xu Q; Zhang Y; Harwood JD; Chen J
    Pest Manag Sci; 2019 Dec; 75(12):3252-3259. PubMed ID: 30993856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking inter-annual variation in environment, phenology, and abundance for a montane butterfly community.
    Stewart JE; Illán JG; Richards SA; Gutiérrez D; Wilson RJ
    Ecology; 2020 Jan; 101(1):e02906. PubMed ID: 31560801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of food quality and competition in shaping the seasonal cycle in the reproductive activity of the sycamore aphid.
    Dixon AF; Wellings PW; Carter C; Nichols JF
    Oecologia; 1993 Mar; 95(1):89-92. PubMed ID: 28313316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated temperature and drought interact to reduce parasitoid effectiveness in suppressing hosts.
    Romo CM; Tylianakis JM
    PLoS One; 2013; 8(3):e58136. PubMed ID: 23472147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature.
    Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    J Anim Ecol; 2018 Jan; 87(1):150-161. PubMed ID: 29048758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aphid-willow interactions in a high Arctic ecosystem: responses to raised temperature and goose disturbance.
    Gillespie MA; Jónsdóttir IS; Hodkinson ID; Cooper EJ
    Glob Chang Biol; 2013 Dec; 19(12):3698-708. PubMed ID: 23749580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change.
    Davies WJ
    Ecology; 2019 Apr; 100(4):e02612. PubMed ID: 30636278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.
    Wheeler HC; Høye TT; Schmidt NM; Svenning JC; Forchhammer MC
    Ecology; 2015 Mar; 96(3):775-87. PubMed ID: 26236873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant silicon application alters leaf alkaloid concentrations and impacts parasitoids more adversely than their aphid hosts.
    Hall CR; Rowe RC; Mikhael M; Read E; Hartley SE; Johnson SN
    Oecologia; 2021 May; 196(1):145-154. PubMed ID: 33929604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillation, synchrony, and multi-factor patterns between cereal aphids and parasitoid populations in southern Brazil.
    Engel E; Lau D; Godoy WAC; Pasini MPB; Malaquias JB; Santos CDR; Pivato J; Pereira PRVDS
    Bull Entomol Res; 2022 Apr; 112(2):143-150. PubMed ID: 34486961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prey-predator phenological mismatch under climate change.
    Damien M; Tougeron K
    Curr Opin Insect Sci; 2019 Oct; 35():60-68. PubMed ID: 31401300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason.
    Güsewell S; Furrer R; Gehrig R; Pietragalla B
    Glob Chang Biol; 2017 Dec; 23(12):5189-5202. PubMed ID: 28586135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drivers of climate change impacts on bird communities.
    Pearce-Higgins JW; Eglington SM; Martay B; Chamberlain DE
    J Anim Ecol; 2015 Jul; 84(4):943-54. PubMed ID: 25757576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.