These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 31985402)
1. Loss of Kat2a enhances transcriptional noise and depletes acute myeloid leukemia stem-like cells. Domingues AF; Kulkarni R; Giotopoulos G; Gupta S; Vinnenberg L; Arede L; Foerner E; Khalili M; Adao RR; Johns A; Tan S; Zeka K; Huntly BJ; Prabakaran S; Pina C Elife; 2020 Jan; 9():. PubMed ID: 31985402 [TBL] [Abstract][Full Text] [Related]
2. Buffering noise: KAT2A modular contributions to stabilization of transcription and cell identity in cancer and development. Arede L; Pina C Exp Hematol; 2021 Jan; 93():25-37. PubMed ID: 33223444 [TBL] [Abstract][Full Text] [Related]
3. Contributions of transcriptional noise to leukaemia evolution: KAT2A as a case-study. Pina C Philos Trans R Soc Lond B Biol Sci; 2024 Apr; 379(1900):20230052. PubMed ID: 38432321 [TBL] [Abstract][Full Text] [Related]
5. Histone Acetyltransferase KAT2A Stabilizes Pluripotency with Control of Transcriptional Heterogeneity. Moris N; Edri S; Seyres D; Kulkarni R; Domingues AF; Balayo T; Frontini M; Pina C Stem Cells; 2018 Dec; 36(12):1828-1838. PubMed ID: 30270482 [TBL] [Abstract][Full Text] [Related]
6. HBO1 is required for the maintenance of leukaemia stem cells. MacPherson L; Anokye J; Yeung MM; Lam EYN; Chan YC; Weng CF; Yeh P; Knezevic K; Butler MS; Hoegl A; Chan KL; Burr ML; Gearing LJ; Willson T; Liu J; Choi J; Yang Y; Bilardi RA; Falk H; Nguyen N; Stupple PA; Peat TS; Zhang M; de Silva M; Carrasco-Pozo C; Avery VM; Khoo PS; Dolezal O; Dennis ML; Nuttall S; Surjadi R; Newman J; Ren B; Leaver DJ; Sun Y; Baell JB; Dovey O; Vassiliou GS; Grebien F; Dawson SJ; Street IP; Monahan BJ; Burns CJ; Choudhary C; Blewitt ME; Voss AK; Thomas T; Dawson MA Nature; 2020 Jan; 577(7789):266-270. PubMed ID: 31827282 [TBL] [Abstract][Full Text] [Related]
7. Divergent functions of histone acetyltransferases KAT2A and KAT2B in keratinocyte self-renewal and differentiation. Walters BW; Tan TJ; Tan CT; Dube CT; Lee KT; Koh J; Ong YHB; Tan VXH; Jahan FRS; Lim XN; Wan Y; Lim CY J Cell Sci; 2023 Jun; 136(12):. PubMed ID: 37259855 [TBL] [Abstract][Full Text] [Related]
8. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Zuber J; Shi J; Wang E; Rappaport AR; Herrmann H; Sison EA; Magoon D; Qi J; Blatt K; Wunderlich M; Taylor MJ; Johns C; Chicas A; Mulloy JC; Kogan SC; Brown P; Valent P; Bradner JE; Lowe SW; Vakoc CR Nature; 2011 Aug; 478(7370):524-8. PubMed ID: 21814200 [TBL] [Abstract][Full Text] [Related]
9. HCK maintains the self-renewal of leukaemia stem cells via CDK6 in AML. Li Z; Wang F; Tian X; Long J; Ling B; Zhang W; Xu J; Liang A J Exp Clin Cancer Res; 2021 Jun; 40(1):210. PubMed ID: 34167558 [TBL] [Abstract][Full Text] [Related]
10. Bortezomib suppresses self-renewal and leukemogenesis of leukemia stem cell by NF-ĸB-dependent inhibition of CDK6 in MLL-rearranged myeloid leukemia. Zhou B; Qin Y; Zhou J; Ruan J; Xiong F; Dong J; Huang X; Yu Z; Gao S J Cell Mol Med; 2021 Mar; 25(6):3124-3135. PubMed ID: 33599085 [TBL] [Abstract][Full Text] [Related]
11. Association of a murine leukaemia stem cell gene signature based on nucleostemin promoter activity with prognosis of acute myeloid leukaemia in patients. Ali MA; Naka K; Yoshida A; Fuse K; Kasada A; Hoshii T; Tadokoro Y; Ueno M; Ohta K; Kobayashi M; Takahashi C; Hirao A Biochem Biophys Res Commun; 2014 Jul; 450(1):837-43. PubMed ID: 24960197 [TBL] [Abstract][Full Text] [Related]
12. Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia. Diffner E; Beck D; Gudgin E; Thoms JA; Knezevic K; Pridans C; Foster S; Goode D; Lim WK; Boelen L; Metzeler KH; Micklem G; Bohlander SK; Buske C; Burnett A; Ottersbach K; Vassiliou GS; Olivier J; Wong JW; Göttgens B; Huntly BJ; Pimanda JE Blood; 2013 Mar; 121(12):2289-300. PubMed ID: 23327922 [TBL] [Abstract][Full Text] [Related]
17. A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. Tzelepis K; Koike-Yusa H; De Braekeleer E; Li Y; Metzakopian E; Dovey OM; Mupo A; Grinkevich V; Li M; Mazan M; Gozdecka M; Ohnishi S; Cooper J; Patel M; McKerrell T; Chen B; Domingues AF; Gallipoli P; Teichmann S; Ponstingl H; McDermott U; Saez-Rodriguez J; Huntly BJP; Iorio F; Pina C; Vassiliou GS; Yusa K Cell Rep; 2016 Oct; 17(4):1193-1205. PubMed ID: 27760321 [TBL] [Abstract][Full Text] [Related]
18. LncRNA MAGI2-AS3 inhibits the self-renewal of leukaemic stem cells by promoting TET2-dependent DNA demethylation of the LRIG1 promoter in acute myeloid leukaemia. Chen L; Fan X; Zhu J; Chen X; Liu Y; Zhou H RNA Biol; 2020 Jun; 17(6):784-793. PubMed ID: 32174258 [TBL] [Abstract][Full Text] [Related]
19. Gata2 as a Crucial Regulator of Stem Cells in Adult Hematopoiesis and Acute Myeloid Leukemia. Menendez-Gonzalez JB; Vukovic M; Abdelfattah A; Saleh L; Almotiri A; Thomas LA; Agirre-Lizaso A; Azevedo A; Menezes AC; Tornillo G; Edkins S; Kong K; Giles P; Anjos-Afonso F; Tonks A; Boyd AS; Kranc KR; Rodrigues NP Stem Cell Reports; 2019 Aug; 13(2):291-306. PubMed ID: 31378673 [TBL] [Abstract][Full Text] [Related]
20. A Gain-of-Function p53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia through the Pluripotency Factor FOXH1. Loizou E; Banito A; Livshits G; Ho YJ; Koche RP; Sánchez-Rivera FJ; Mayle A; Chen CC; Kinalis S; Bagger FO; Kastenhuber ER; Durham BH; Lowe SW Cancer Discov; 2019 Jul; 9(7):962-979. PubMed ID: 31068365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]