These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31985439)

  • 41. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SPARK-MSNA: Efficient algorithm on Apache Spark for aligning multiple similar DNA/RNA sequences with supervised learning.
    Vineetha V; Biji CL; Nair AS
    Sci Rep; 2019 Apr; 9(1):6631. PubMed ID: 31036850
    [TBL] [Abstract][Full Text] [Related]  

  • 43. HyDA-Vista: towards optimal guided selection of k-mer size for sequence assembly.
    Shariat B; Movahedi NS; Chitsaz H; Boucher C
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S9. PubMed ID: 25558875
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An efficient algorithm for finding short approximate non-tandem repeats.
    Adebiyi EF; Jiang T; Kaufmann M
    Bioinformatics; 2001; 17 Suppl 1():S5-S12. PubMed ID: 11472987
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RecMotif: a novel fast algorithm for weak motif discovery.
    Sun HQ; Low MY; Hsu WJ; Rajapakse JC
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S8. PubMed ID: 21172058
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient sequential and parallel algorithms for planted motif search.
    Nicolae M; Rajasekaran S
    BMC Bioinformatics; 2014 Jan; 15():34. PubMed ID: 24479443
    [TBL] [Abstract][Full Text] [Related]  

  • 47. AN EFFICIENT ALGORITHM FOR CHINESE POSTMAN WALK ON BI-DIRECTED DE BRUIJN GRAPHS.
    Kundeti V; Rajasekaran S; Dinh H
    Discrete Math Algorithms Appl; 2010; 1():184-196. PubMed ID: 25364472
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Towards a better solution to the shortest common supersequence problem: the deposition and reduction algorithm.
    Ning K; Leong HW
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S12. PubMed ID: 17217504
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An efficient rank based approach for closest string and closest substring.
    Dinu LP; Ionescu R
    PLoS One; 2012; 7(6):e37576. PubMed ID: 22675483
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient Compression and Indexing for Highly Repetitive DNA Sequence Collections.
    Huo H; Chen X; Guo X; Vitter JS
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2394-2408. PubMed ID: 31985436
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A string pattern regression algorithm and its application to pattern discovery in long introns.
    Bannai H; Inenaga S; Shinohara A; Takeda M; Miyano S
    Genome Inform; 2002; 13():3-11. PubMed ID: 14571369
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimizing reduced-space sequence analysis.
    Wheeler R; Hughey R
    Bioinformatics; 2000 Dec; 16(12):1082-90. PubMed ID: 11159327
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient tools for comparative substring analysis.
    Apostolico A; Denas O; Dress A
    J Biotechnol; 2010 Sep; 149(3):120-6. PubMed ID: 20682467
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proving sequence aligners can guarantee accuracy in almost
    Shaw J; Yu YW
    Genome Res; 2023 Jul; 33(7):1175-1187. PubMed ID: 36990779
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Simple Linear Space Algorithm for Computing Nonoverlapping Inversion and Transposition Distance in Quadratic Average Time.
    Wang X; Wang L
    J Comput Biol; 2018 Jun; 25(6):563-575. PubMed ID: 29658774
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The shortest common supersequence problem in a microarray production setting.
    Rahmann S
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii156-61. PubMed ID: 14534185
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient motif finding algorithms for large-alphabet inputs.
    Kuksa PP; Pavlovic V
    BMC Bioinformatics; 2010 Oct; 11 Suppl 8(Suppl 8):S1. PubMed ID: 21034426
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.
    Roy I; Aluru S
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(1):99-111. PubMed ID: 26886735
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Simple, Fast, Filter-Based Algorithm for Approximate Circular Pattern Matching.
    Azim MA; Iliopoulos CS; Rahman MS; Samiruzzaman M
    IEEE Trans Nanobioscience; 2016 Mar; 15(2):93-100. PubMed ID: 26992174
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fast and practical algorithms for planted (l, d) motif search.
    Davila J; Balla S; Rajasekaran S
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):544-52. PubMed ID: 17975266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.