These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 31985775)
1. Integrative analysis of cross-modal features for the prognosis prediction of clear cell renal cell carcinoma. Ning Z; Pan W; Chen Y; Xiao Q; Zhang X; Luo J; Wang J; Zhang Y Bioinformatics; 2020 May; 36(9):2888-2895. PubMed ID: 31985775 [TBL] [Abstract][Full Text] [Related]
2. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation. Lee H; Hong H; Kim J; Jung DC Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742 [TBL] [Abstract][Full Text] [Related]
3. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739 [TBL] [Abstract][Full Text] [Related]
4. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
5. Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis. Cheng J; Zhang J; Han Y; Wang X; Ye X; Meng Y; Parwani A; Han Z; Feng Q; Huang K Cancer Res; 2017 Nov; 77(21):e91-e100. PubMed ID: 29092949 [TBL] [Abstract][Full Text] [Related]
6. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Ding J; Xing Z; Jiang Z; Chen J; Pan L; Qiu J; Xing W Eur J Radiol; 2018 Jun; 103():51-56. PubMed ID: 29803385 [TBL] [Abstract][Full Text] [Related]
7. GPDBN: deep bilinear network integrating both genomic data and pathological images for breast cancer prognosis prediction. Wang Z; Li R; Wang M; Li A Bioinformatics; 2021 Sep; 37(18):2963-2970. PubMed ID: 33734318 [TBL] [Abstract][Full Text] [Related]
8. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Nazari M; Shiri I; Hajianfar G; Oveisi N; Abdollahi H; Deevband MR; Oveisi M; Zaidi H Radiol Med; 2020 Aug; 125(8):754-762. PubMed ID: 32193870 [TBL] [Abstract][Full Text] [Related]
9. A convolutional neural network model for survival prediction based on prognosis-related cascaded Wx feature selection. Yin Q; Chen W; Zhang C; Wei Z Lab Invest; 2022 Oct; 102(10):1064-1074. PubMed ID: 35810236 [TBL] [Abstract][Full Text] [Related]
10. Reliable gene mutation prediction in clear cell renal cell carcinoma through multi-classifier multi-objective radiogenomics model. Chen X; Zhou Z; Hannan R; Thomas K; Pedrosa I; Kapur P; Brugarolas J; Mou X; Wang J Phys Med Biol; 2018 Oct; 63(21):215008. PubMed ID: 30277889 [TBL] [Abstract][Full Text] [Related]
11. Multimodal deep learning for personalized renal cell carcinoma prognosis: Integrating CT imaging and clinical data. Mahootiha M; Qadir HA; Bergsland J; Balasingham I Comput Methods Programs Biomed; 2024 Feb; 244():107978. PubMed ID: 38113804 [TBL] [Abstract][Full Text] [Related]
12. Prognosis of clear cell renal cell carcinoma (ccRCC) based on a six-lncRNA-based risk score: an investigation based on RNA-sequencing data. Zeng JH; Lu W; Liang L; Chen G; Lan HH; Liang XY; Zhu X J Transl Med; 2019 Aug; 17(1):281. PubMed ID: 31443717 [TBL] [Abstract][Full Text] [Related]
15. CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma. Lin F; Cui EM; Lei Y; Luo LP Abdom Radiol (NY); 2019 Jul; 44(7):2528-2534. PubMed ID: 30919041 [TBL] [Abstract][Full Text] [Related]
16. Integrative Analysis of Multi-Genomic Data for Kidney Renal Cell Carcinoma. Singh A; Goel N; Yogita Interdiscip Sci; 2020 Mar; 12(1):12-23. PubMed ID: 31392539 [TBL] [Abstract][Full Text] [Related]
17. Papillary renal cell carcinoma and clear cell renal cell carcinoma: Differentiation of distinct histological types with contrast - enhanced ultrasonography. Xue LY; Lu Q; Huang BJ; Li Z; Li CX; Wen JX; Wang WP Eur J Radiol; 2015 Oct; 84(10):1849-56. PubMed ID: 26149528 [TBL] [Abstract][Full Text] [Related]
18. Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas. Kocak B; Durmaz ES; Kaya OK; Kilickesmez O Acta Radiol; 2020 Jun; 61(6):856-864. PubMed ID: 31635476 [TBL] [Abstract][Full Text] [Related]
19. Multimodal Deep Learning for Prognosis Prediction in Renal Cancer. Schulz S; Woerl AC; Jungmann F; Glasner C; Stenzel P; Strobl S; Fernandez A; Wagner DC; Haferkamp A; Mildenberger P; Roth W; Foersch S Front Oncol; 2021; 11():788740. PubMed ID: 34900744 [TBL] [Abstract][Full Text] [Related]
20. Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade. Shu J; Tang Y; Cui J; Yang R; Meng X; Cai Z; Zhang J; Xu W; Wen D; Yin H Eur J Radiol; 2018 Dec; 109():8-12. PubMed ID: 30527316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]