These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 31986013)
1. Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices. Cheng Z; Mu F; Yates L; Suga T; Graham S ACS Appl Mater Interfaces; 2020 Feb; 12(7):8376-8384. PubMed ID: 31986013 [TBL] [Abstract][Full Text] [Related]
2. High Thermal Boundary Conductance across Bonded Heterogeneous GaN-SiC Interfaces. Mu F; Cheng Z; Shi J; Shin S; Xu B; Shiomi J; Graham S; Suga T ACS Appl Mater Interfaces; 2019 Sep; 11(36):33428-33434. PubMed ID: 31408316 [TBL] [Abstract][Full Text] [Related]
3. High Thermal Stability and Low Thermal Resistance of Large Area GaN/3C-SiC/Diamond Junctions for Practical Device Processes. Kagawa R; Cheng Z; Kawamura K; Ohno Y; Moriyama C; Sakaida Y; Ouchi S; Uratani H; Inoue K; Nagai Y; Shigekawa N; Liang J Small; 2024 Mar; 20(13):e2305574. PubMed ID: 37964293 [TBL] [Abstract][Full Text] [Related]
4. Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review. Zhan T; Xu M; Cao Z; Zheng C; Kurita H; Narita F; Wu YJ; Xu Y; Wang H; Song M; Wang W; Zhou Y; Liu X; Shi Y; Jia Y; Guan S; Hanajiri T; Maekawa T; Okino A; Watanabe T Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004933 [TBL] [Abstract][Full Text] [Related]
5. Thermal Transport and Mechanical Stress Mapping of a Compression Bonded GaN/Diamond Interface for Vertical Power Devices. Delmas W; Jarzembski A; Bahr M; McDonald A; Hodges W; Lu P; Deitz J; Ziade E; Piontkowski ZT; Yates L ACS Appl Mater Interfaces; 2024 Feb; 16(8):11003-11012. PubMed ID: 38373710 [TBL] [Abstract][Full Text] [Related]
6. Thermal Transport across Ion-Cut Monocrystalline β-Ga Cheng Z; Mu F; You T; Xu W; Shi J; Liao ME; Wang Y; Huynh K; Suga T; Goorsky MS; Ou X; Graham S ACS Appl Mater Interfaces; 2020 Oct; 12(40):44943-44951. PubMed ID: 32909730 [TBL] [Abstract][Full Text] [Related]
7. Crystalline Interlayers for Reducing the Effective Thermal Boundary Resistance in GaN-on-Diamond. Field DE; Cuenca JA; Smith M; Fairclough SM; Massabuau FC; Pomeroy JW; Williams O; Oliver RA; Thayne I; Kuball M ACS Appl Mater Interfaces; 2020 Dec; 12(48):54138-54145. PubMed ID: 33196180 [TBL] [Abstract][Full Text] [Related]
8. Low Thermal Boundary Resistance Interfaces for GaN-on-Diamond Devices. Yates L; Anderson J; Gu X; Lee C; Bai T; Mecklenburg M; Aoki T; Goorsky MS; Kuball M; Piner EL; Graham S ACS Appl Mater Interfaces; 2018 Jul; 10(28):24302-24309. PubMed ID: 29939717 [TBL] [Abstract][Full Text] [Related]
9. Thermal Visualization of Buried Interfaces Enabled by Ratio Signal and Steady-State Heating of Time-Domain Thermoreflectance. Cheng Z; Mu F; Ji X; You T; Xu W; Suga T; Ou X; Cahill DG; Graham S ACS Appl Mater Interfaces; 2021 Jul; 13(27):31843-31851. PubMed ID: 34191480 [TBL] [Abstract][Full Text] [Related]
10. Significantly Enhanced Interfacial Thermal Conductance across GaN/Diamond Interfaces Utilizing Al Wu K; Chang G; Ye J; Zhang G ACS Appl Mater Interfaces; 2024 Oct; 16(43):58880-58890. PubMed ID: 39422442 [TBL] [Abstract][Full Text] [Related]
11. Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling. Malakoutian M; Field DE; Hines NJ; Pasayat S; Graham S; Kuball M; Chowdhury S ACS Appl Mater Interfaces; 2021 Dec; 13(50):60553-60560. PubMed ID: 34875169 [TBL] [Abstract][Full Text] [Related]
12. Diamond/GaN HEMTs: Where from and Where to? Mendes JC; Liehr M; Li C Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057131 [TBL] [Abstract][Full Text] [Related]
13. Mechanical regulation to interfacial thermal transport in GaN/diamond heterostructures for thermal switch. Yu X; Li Y; He R; Wen Y; Chen R; Xu B; Gao Y Nanoscale Horiz; 2024 Aug; 9(9):1557-1567. PubMed ID: 39016031 [TBL] [Abstract][Full Text] [Related]
14. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance. Cheng Z; Bougher T; Bai T; Wang SY; Li C; Yates L; Foley BM; Goorsky M; Cola BA; Faili F; Graham S ACS Appl Mater Interfaces; 2018 Feb; 10(5):4808-4815. PubMed ID: 29328632 [TBL] [Abstract][Full Text] [Related]
15. Thermal Properties of Schottky Barrier Diode on AlGaN/GaN Heterostructures on Chemical Vapor Deposition Diamond. Kim ZS; Lee HS; Bae SB; Nam E; Lim JW J Nanosci Nanotechnol; 2019 Oct; 19(10):6119-6122. PubMed ID: 31026919 [TBL] [Abstract][Full Text] [Related]
16. Thermal Behavior of an AlGaN/GaN-Based Schottky Barrier Diode on Diamond and Silicon Substrates. Kim ZS; Lee HS; Bae SB; Ahn H; Lee SH; Lim JW; Kang DM J Nanosci Nanotechnol; 2021 Aug; 21(8):4429-4433. PubMed ID: 33714339 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Thermal Boundary Conductance across GaN/SiC Interfaces with AlN Transition Layers. Li R; Hussain K; Liao ME; Huynh K; Hoque MSB; Wyant S; Koh YR; Xu Z; Wang Y; Luccioni DP; Cheng Z; Shi J; Lee E; Graham S; Henry A; Hopkins PE; Goorsky MS; Khan MA; Luo T ACS Appl Mater Interfaces; 2024 Feb; 16(6):8109-8118. PubMed ID: 38315970 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of GaN/Diamond Heterointerface and Interfacial Chemical Bonding State for Highly Efficient Device Design. Liang J; Kobayashi A; Shimizu Y; Ohno Y; Kim SW; Koyama K; Kasu M; Nagai Y; Shigekawa N Adv Mater; 2021 Oct; 33(43):e2104564. PubMed ID: 34498296 [TBL] [Abstract][Full Text] [Related]
19. Ga Song Y; Shoemaker D; Leach JH; McGray C; Huang HL; Bhattacharyya A; Zhang Y; Gonzalez-Valle CU; Hess T; Zhukovsky S; Ferri K; Lavelle RM; Perez C; Snyder DW; Maria JP; Ramos-Alvarado B; Wang X; Krishnamoorthy S; Hwang J; Foley BM; Choi S ACS Appl Mater Interfaces; 2021 Sep; 13(34):40817-40829. PubMed ID: 34470105 [TBL] [Abstract][Full Text] [Related]
20. Properties for Thermally Conductive Interfaces with Wide Band Gap Materials. Khan S; Angeles F; Wright J; Vishwakarma S; Ortiz VH; Guzman E; Kargar F; Balandin AA; Smith DJ; Jena D; Xing HG; Wilson R ACS Appl Mater Interfaces; 2022 Aug; 14(31):36178-36188. PubMed ID: 35895030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]