These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31986189)

  • 1. Introducing neuromodulation in deep neural networks to learn adaptive behaviours.
    Vecoven N; Ernst D; Wehenkel A; Drion G
    PLoS One; 2020; 15(1):e0227922. PubMed ID: 31986189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of cartesian genetic programs for development of learning neural architecture.
    Khan GM; Miller JF; Halliday DM
    Evol Comput; 2011; 19(3):469-523. PubMed ID: 21591889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Resonance Theory: how a brain learns to consciously attend, learn, and recognize a changing world.
    Grossberg S
    Neural Netw; 2013 Jan; 37():1-47. PubMed ID: 23149242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection-for-action emerges in neural networks trained to learn spatial associations between stimuli and actions.
    Simione L; Nolfi S
    Cogn Process; 2015 Sep; 16 Suppl 1():393-7. PubMed ID: 26232191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of learning in biologically plausible spiking neural networks.
    Taherkhani A; Belatreche A; Li Y; Cosma G; Maguire LP; McGinnity TM
    Neural Netw; 2020 Feb; 122():253-272. PubMed ID: 31726331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.
    Ellefsen KO; Mouret JB; Clune J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004128. PubMed ID: 25837826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.
    Tan AH; Lu N; Xiao D
    IEEE Trans Neural Netw; 2008 Feb; 19(2):230-44. PubMed ID: 18269955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theory of general intelligence.
    Lui HW
    Med Hypotheses; 2019 Feb; 123():35-46. PubMed ID: 30696589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Context meta-reinforcement learning via neuromodulation.
    Ben-Iwhiwhu E; Dick J; Ketz NA; Pilly PK; Soltoggio A
    Neural Netw; 2022 Aug; 152():70-79. PubMed ID: 35512540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Closed-form expressions of some stochastic adapting equations for nonlinear adaptive activation function neurons.
    Fiori S
    Neural Comput; 2003 Dec; 15(12):2909-29. PubMed ID: 14629873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-Mantec: a novel constructive neural network algorithm incorporating competition between neurons.
    Subirats JL; Franco L; Jerez JM
    Neural Netw; 2012 Feb; 26():130-40. PubMed ID: 22075034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Informing deep neural networks by multiscale principles of neuromodulatory systems.
    Mei J; Muller E; Ramaswamy S
    Trends Neurosci; 2022 Mar; 45(3):237-250. PubMed ID: 35074219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Habituation: a non-associative learning rule design for spiking neurons and an autonomous mobile robots implementation.
    Cyr A; Boukadoum M
    Bioinspir Biomim; 2013 Mar; 8(1):016007. PubMed ID: 23385344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning to synchronize: How biological agents can couple neural task modules for dealing with the stability-plasticity dilemma.
    Verbeke P; Verguts T
    PLoS Comput Biol; 2019 Aug; 15(8):e1006604. PubMed ID: 31430280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments.
    Iyer A; Grewal K; Velu A; Souza LO; Forest J; Ahmad S
    Front Neurorobot; 2022; 16():846219. PubMed ID: 35574225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Animats: computer-simulated animals in behavioral research.
    Watts JM
    J Anim Sci; 1998 Oct; 76(10):2596-604. PubMed ID: 9814899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blind signal processing by the adaptive activation function neurons.
    Fiori S
    Neural Netw; 2000 Jul; 13(6):597-611. PubMed ID: 10987513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.