These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31986324)

  • 1. A stimulus-brain coupling analysis of regular and irregular rhythms in adults with dyslexia and controls.
    Fiveash A; Schön D; Canette LH; Morillon B; Bedoin N; Tillmann B
    Brain Cogn; 2020 Apr; 140():105531. PubMed ID: 31986324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regular rhythmic primes boost P600 in grammatical error processing in dyslexic adults and matched controls.
    Canette LH; Fiveash A; Krzonowski J; Corneyllie A; Lalitte P; Thompson D; Trainor L; Bedoin N; Tillmann B
    Neuropsychologia; 2020 Feb; 138():107324. PubMed ID: 31877312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What can we learn about beat perception by comparing brain signals and stimulus envelopes?
    Henry MJ; Herrmann B; Grahn JA
    PLoS One; 2017; 12(2):e0172454. PubMed ID: 28225796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhythm in the Premature Neonate Brain: Very Early Processing of Auditory Beat and Meter.
    Edalati M; Wallois F; Safaie J; Ghostine G; Kongolo G; Trainor LJ; Moghimi S
    J Neurosci; 2023 Apr; 43(15):2794-2802. PubMed ID: 36914264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of rhythmic entrainment at multiple timescales in dyslexia: evidence for disruption to syllable timing.
    Leong V; Goswami U
    Hear Res; 2014 Feb; 308(100):141-61. PubMed ID: 23916752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural entrainment is associated with subjective groove and complexity for performed but not mechanical musical rhythms.
    Cameron DJ; Zioga I; Lindsen JP; Pearce MT; Wiggins GA; Potter K; Bhattacharya J
    Exp Brain Res; 2019 Aug; 237(8):1981-1991. PubMed ID: 31152188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atypical beta power fluctuation while listening to an isochronous sequence in dyslexia.
    Chang A; Bedoin N; Canette LH; Nozaradan S; Thompson D; Corneyllie A; Tillmann B; Trainor LJ
    Clin Neurophysiol; 2021 Oct; 132(10):2384-2390. PubMed ID: 34454265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory rhythms entrain visual processes in the human brain: evidence from evoked oscillations and event-related potentials.
    Escoffier N; Herrmann CS; Schirmer A
    Neuroimage; 2015 May; 111():267-76. PubMed ID: 25701698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental rhythms orchestrate neural activity at multiple stages of processing during memory encoding: Evidence from event-related potentials.
    Hickey P; Barnett-Young A; Patel AD; Race E
    PLoS One; 2020; 15(11):e0234668. PubMed ID: 33206657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disentangling beat perception from sequential learning and examining the influence of attention and musical abilities on ERP responses to rhythm.
    Bouwer FL; Werner CM; Knetemann M; Honing H
    Neuropsychologia; 2016 May; 85():80-90. PubMed ID: 26972966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Entrainment to the Beat: The "Missing-Pulse" Phenomenon.
    Tal I; Large EW; Rabinovitch E; Wei Y; Schroeder CE; Poeppel D; Zion Golumbic E
    J Neurosci; 2017 Jun; 37(26):6331-6341. PubMed ID: 28559379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atypical neural processing of rise time by adults with dyslexia.
    Van Hirtum T; Ghesquière P; Wouters J
    Cortex; 2019 Apr; 113():128-140. PubMed ID: 30640141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of the anterior insula to temporal auditory processing deficits in developmental dyslexia.
    Steinbrink C; Ackermann H; Lachmann T; Riecker A
    Hum Brain Mapp; 2009 Aug; 30(8):2401-11. PubMed ID: 19072896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Entrainment in Drum Rhythms with Silent Breaks: Evidence from Steady-state Evoked and Event-related Potentials.
    Stupacher J; Witte M; Hove MJ; Wood G
    J Cogn Neurosci; 2016 Dec; 28(12):1865-1877. PubMed ID: 27458750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory temporal coding in dyslexia.
    McAnally KI; Stein JF
    Proc Biol Sci; 1996 Aug; 263(1373):961-5. PubMed ID: 8805833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deviant neural processing of phonotactic probabilities in adults with dyslexia.
    Noordenbos MW; Segers E; Mitterer H; Serniclaes W; Verhoeven L
    Neuroreport; 2013 Sep; 24(13):746-50. PubMed ID: 23903462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural tracking of the musical beat is enhanced by low-frequency sounds.
    Lenc T; Keller PE; Varlet M; Nozaradan S
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8221-8226. PubMed ID: 30037989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deficits in beat perception and dyslexia: evidence from French.
    Muneaux M; Ziegler JC; Truc C; Thomson J; Goswami U
    Neuroreport; 2004 Jun; 15(8):1255-9. PubMed ID: 15167544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential entrainment of neuroelectric delta oscillations in developmental dyslexia.
    Soltész F; Szűcs D; Leong V; White S; Goswami U
    PLoS One; 2013; 8(10):e76608. PubMed ID: 24204644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Music as a scaffold for listening to speech: Better neural phase-locking to song than speech.
    Vanden Bosch der Nederlanden CM; Joanisse MF; Grahn JA
    Neuroimage; 2020 Jul; 214():116767. PubMed ID: 32217165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.