These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 31986482)
1. Water relations of two Sicilian grapevine cultivars in response to potassium availability and drought stress. Oddo E; Abbate L; Inzerillo S; Carimi F; Motisi A; Sajeva M; Nardini A Plant Physiol Biochem; 2020 Mar; 148():282-290. PubMed ID: 31986482 [TBL] [Abstract][Full Text] [Related]
2. Does short-term potassium fertilization improve recovery from drought stress in laurel? Oddo E; Inzerillo S; Grisafi F; Sajeva M; Salleo S; Nardini A Tree Physiol; 2014 Aug; 34(8):906-13. PubMed ID: 24488799 [TBL] [Abstract][Full Text] [Related]
3. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera. Tombesi S; Nardini A; Farinelli D; Palliotti A Physiol Plant; 2014 Nov; 152(3):453-64. PubMed ID: 24597791 [TBL] [Abstract][Full Text] [Related]
4. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. Coupel-Ledru A; Lebon É; Christophe A; Doligez A; Cabrera-Bosquet L; Péchier P; Hamard P; This P; Simonneau T J Exp Bot; 2014 Nov; 65(21):6205-18. PubMed ID: 25381432 [TBL] [Abstract][Full Text] [Related]
5. Variable hydraulic resistances and their impact on plant drought response modelling. Baert A; De Schepper V; Steppe K Tree Physiol; 2015 Apr; 35(4):439-49. PubMed ID: 25273815 [TBL] [Abstract][Full Text] [Related]
6. Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars. Albuquerque C; Scoffoni C; Brodersen CR; Buckley TN; Sack L; McElrone AJ J Exp Bot; 2020 Dec; 71(22):7286-7300. PubMed ID: 33306796 [TBL] [Abstract][Full Text] [Related]
7. Potassium deficiency enhances imbalances in rice water relations under water deficit by decreasing leaf hydraulic conductance. Yang C; Lu J; Xiong Z; Wang B; Ren T; Cong R; Lu Z; Li X Physiol Plant; 2024; 176(3):e14360. PubMed ID: 38797869 [TBL] [Abstract][Full Text] [Related]
8. Do the ends justify the means? Impact of drought progression rate on stress response and recovery in Vitis vinifera. Morabito C; Orozco J; Tonel G; Cavalletto S; Meloni GR; Schubert A; Gullino ML; Zwieniecki MA; Secchi F Physiol Plant; 2022 Jan; 174(1):e13590. PubMed ID: 34729782 [TBL] [Abstract][Full Text] [Related]
9. Seasonal changes of whole root system conductance by a drought-tolerant grape root system. Alsina MM; Smart DR; Bauerle T; de Herralde F; Biel C; Stockert C; Negron C; Save R J Exp Bot; 2011 Jan; 62(1):99-109. PubMed ID: 20851906 [TBL] [Abstract][Full Text] [Related]
10. Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability. Hochberg U; Bonel AG; David-Schwartz R; Degu A; Fait A; Cochard H; Peterlunger E; Herrera JC Planta; 2017 Jun; 245(6):1091-1104. PubMed ID: 28214919 [TBL] [Abstract][Full Text] [Related]
11. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants. Romero P; Botía P; Keller M J Plant Physiol; 2017 Sep; 216():58-73. PubMed ID: 28577386 [TBL] [Abstract][Full Text] [Related]
12. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014 [TBL] [Abstract][Full Text] [Related]
13. Stomatal factors and vulnerability of stem xylem to cavitation in poplars. Arango-Velez A; Zwiazek JJ; Thomas BR; Tyree MT Physiol Plant; 2011 Oct; 143(2):154-65. PubMed ID: 21623799 [TBL] [Abstract][Full Text] [Related]
14. Stomatal responses in grapevine become increasingly more tolerant to low water potentials throughout the growing season. Herrera JC; Calderan A; Gambetta GA; Peterlunger E; Forneck A; Sivilotti P; Cochard H; Hochberg U Plant J; 2022 Feb; 109(4):804-815. PubMed ID: 34797611 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of water relation parameters in vitis rootstocks with different drought tolerance and their effects on growth of a grafted cultivar. Gullo G; Dattola A; Vonella V; Zappia R J Plant Physiol; 2018 Jul; 226():172-178. PubMed ID: 29783057 [TBL] [Abstract][Full Text] [Related]
16. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions. Pivovaroff AL; Cook VMW; Santiago LS Plant Cell Environ; 2018 Nov; 41(11):2617-2626. PubMed ID: 29904932 [TBL] [Abstract][Full Text] [Related]
17. Interactive effects of grapevine leafroll-associated virus 3 (GLRaV-3) and water stress on the physiology of Vitis vinifera L. cv. Malvasia de Banyalbufar and Giro-Ros. El Aou-Ouad H; Montero R; Medrano H; Bota J J Plant Physiol; 2016 Jun; 196-197():106-15. PubMed ID: 27153513 [TBL] [Abstract][Full Text] [Related]
18. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris). Pou A; Flexas J; Alsina Mdel M; Bota J; Carambula C; de Herralde F; Galmés J; Lovisolo C; Jiménez M; Ribas-Carbó M; Rusjan D; Secchi F; Tomàs M; Zsófi Z; Medrano H Physiol Plant; 2008 Oct; 134(2):313-23. PubMed ID: 18507813 [TBL] [Abstract][Full Text] [Related]
19. The Accumulation of miRNAs Differentially Modulated by Drought Stress Is Affected by Grafting in Grapevine. Pagliarani C; Vitali M; Ferrero M; Vitulo N; Incarbone M; Lovisolo C; Valle G; Schubert A Plant Physiol; 2017 Apr; 173(4):2180-2195. PubMed ID: 28235889 [TBL] [Abstract][Full Text] [Related]