These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 31986507)
1. Improvement of power conversion efficiency by a stepwise band-gap structure for silicon quantum dot solar cells. Kwak GY; Kim TG; Kim N; Shin JY; Kim KJ Nanotechnology; 2020 May; 31(19):195404. PubMed ID: 31986507 [TBL] [Abstract][Full Text] [Related]
2. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications. Sarkhoush M; Rasooli Saghai H; Soofi H Front Optoelectron; 2022 Oct; 15(1):42. PubMed ID: 36637679 [TBL] [Abstract][Full Text] [Related]
3. Efficient light harvesting in hybrid quantum dot-interdigitated back contact solar cells via resonant energy transfer and luminescent downshifting. Krishnan C; Mercier T; Rahman T; Piana G; Brossard M; Yagafarov T; To A; Pollard ME; Shaw P; Bagnall DM; Hoex B; Boden SA; Lagoudakis PG; Charlton MDB Nanoscale; 2019 Oct; 11(40):18837-18844. PubMed ID: 31595913 [TBL] [Abstract][Full Text] [Related]
4. Silicon quantum dot/crystalline silicon solar cells. Cho EC; Park S; Hao X; Song D; Conibeer G; Park SC; Green MA Nanotechnology; 2008 Jun; 19(24):245201. PubMed ID: 21825804 [TBL] [Abstract][Full Text] [Related]
5. Ultraviolet responses of a heterojunction Si quantum dot solar cell. Lee SH; Kwak GY; Hong S; Kim C; Kim S; Kim A; Kim KJ Nanotechnology; 2017 Jan; 28(3):035402. PubMed ID: 27934781 [TBL] [Abstract][Full Text] [Related]
6. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833 [TBL] [Abstract][Full Text] [Related]
7. High efficiency Si quantum dot heterojunction solar cells using a single SiO Kim TG; Kwak GY; Do K; Kim KJ Nanotechnology; 2019 Aug; 30(32):325404. PubMed ID: 30952144 [TBL] [Abstract][Full Text] [Related]
8. Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells. Mahajan C; Sharma A; Rath AK ACS Appl Mater Interfaces; 2020 Nov; 12(44):49840-49848. PubMed ID: 33081466 [TBL] [Abstract][Full Text] [Related]
9. Colloidal PbS quantum dot solar cells with high fill factor. Zhao N; Osedach TP; Chang LY; Geyer SM; Wanger D; Binda MT; Arango AC; Bawendi MG; Bulovic V ACS Nano; 2010 Jul; 4(7):3743-52. PubMed ID: 20590129 [TBL] [Abstract][Full Text] [Related]
10. Effect of the Niobium-Doped Titanium Oxide Thickness and Thermal Oxide Layer for Silicon Quantum Dot Solar Cells as a Dopant-Blocking Layer. Akaishi R; Kitazawa K; Gotoh K; Kato S; Usami N; Kurokawa Y Nanoscale Res Lett; 2020 Feb; 15(1):39. PubMed ID: 32040622 [TBL] [Abstract][Full Text] [Related]
11. Si solid-state quantum dot-based materials for tandem solar cells. Conibeer G; Perez-Wurfl I; Hao X; Di D; Lin D Nanoscale Res Lett; 2012 Mar; 7(1):193. PubMed ID: 22436303 [TBL] [Abstract][Full Text] [Related]
12. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107 [TBL] [Abstract][Full Text] [Related]
13. Investigations aimed at producing 33% efficient perovskite-silicon tandem solar cells through device simulations. Shrivastav N; Madan J; Pandey R; Shalan AE RSC Adv; 2021 Nov; 11(59):37366-37374. PubMed ID: 35496422 [TBL] [Abstract][Full Text] [Related]
14. MoS Najafi L; Taheri B; Martín-García B; Bellani S; Di Girolamo D; Agresti A; Oropesa-Nuñez R; Pescetelli S; Vesce L; Calabrò E; Prato M; Del Rio Castillo AE; Di Carlo A; Bonaccorso F ACS Nano; 2018 Nov; 12(11):10736-10754. PubMed ID: 30240189 [TBL] [Abstract][Full Text] [Related]
15. Physical and electrical characteristics of Si/SiC quantum dot superlattice solar cells with passivation layer of aluminum oxide. Tsai YC; Li Y; Samukawa S Nanotechnology; 2017 Dec; 28(48):485401. PubMed ID: 28976353 [TBL] [Abstract][Full Text] [Related]
16. Tuning of refractive indices and optical band gaps in oxidized silicon quantum dot solids. Choi JK; Jang S; Sohn H; Jeong HD J Am Chem Soc; 2009 Dec; 131(49):17894-900. PubMed ID: 19911790 [TBL] [Abstract][Full Text] [Related]
17. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells. Park J; Shin C; Park H; Jung J; Lee YJ; Bong S; Dao VA; Balaji N; Yi J J Nanosci Nanotechnol; 2015 Mar; 15(3):2241-6. PubMed ID: 26413646 [TBL] [Abstract][Full Text] [Related]
18. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells. Kourkoutis LF; Hao X; Huang S; Puthen-Veettil B; Conibeer G; Green MA; Perez-Wurfl I Nanoscale; 2013 Aug; 5(16):7499-504. PubMed ID: 23832085 [TBL] [Abstract][Full Text] [Related]
20. Quantum-Dot Tandem Solar Cells Based on a Solution-Processed Nanoparticle Intermediate Layer. Hu L; Wang Y; Shivarudraiah SB; Yuan J; Guan X; Geng X; Younis A; Hu Y; Huang S; Wu T; Halpert JE ACS Appl Mater Interfaces; 2020 Jan; 12(2):2313-2318. PubMed ID: 31840973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]