These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 31986631)

  • 1. Extraction of Noble and Rare-Earth Metals from Aqueous Solutions by DNA Cross-Linked Hydrogels.
    Maeda Y; Zinchenko A; Lopatina LI; Sergeyev VG; Murata S
    Chempluschem; 2013 Jul; 78(7):619-622. PubMed ID: 31986631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of Noble and Rare-Earth Metals from Aqueous Solutions by DNA Cross-Linked Hydrogels.
    Maeda Y; Zinchenko A; Lopatina LI; Sergeyev VG; Murata S
    Chempluschem; 2013 Jul; 78(7):606. PubMed ID: 31986619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase.
    Rout A; Binnemans K
    Dalton Trans; 2014 Feb; 43(8):3186-95. PubMed ID: 24352299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon.
    Rollat A; Guyonnet D; Planchon M; Tuduri J
    Waste Manag; 2016 Mar; 49():427-436. PubMed ID: 26818182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient separation of transition metals from rare earths by an undiluted phosphonium thiocyanate ionic liquid.
    Rout A; Binnemans K
    Phys Chem Chem Phys; 2016 Jun; 18(23):16039-45. PubMed ID: 27243450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.
    Kumari A; Sinha MK; Pramanik S; Sahu SK
    Waste Manag; 2018 May; 75():486-498. PubMed ID: 29397277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 1-dodecanethiol-based phase transfer protocol for the highly efficient extraction of noble metal ions from aqueous phase.
    Chen D; Cui P; Cao H; Yang J
    J Environ Sci (China); 2015 Mar; 29():146-50. PubMed ID: 25766023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.
    Yang F; Kubota F; Baba Y; Kamiya N; Goto M
    J Hazard Mater; 2013 Jun; 254-255():79-88. PubMed ID: 23587931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distributions of rare earths and heavy metals in field-grown maize after application of rare earth-containing fertilizer.
    Xu X; Zhu W; Wang Z; Witkamp GJ
    Sci Total Environ; 2002 Jul; 293(1-3):97-105. PubMed ID: 12109484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.
    Bogart JA; Lippincott CA; Carroll PJ; Schelter EJ
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8222-5. PubMed ID: 26014901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of Rare Earths(Ⅲ) Using an Efficient Sodium Alginate Hydrogel Cross-Linked with Poly-γ-Glutamate.
    Xu S; Wang Z; Gao Y; Zhang S; Wu K
    PLoS One; 2015; 10(5):e0124826. PubMed ID: 25996388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid.
    Minoda A; Sawada H; Suzuki S; Miyashita S; Inagaki K; Yamamoto T; Tsuzuki M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1513-9. PubMed ID: 25283836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor.
    Hu AH; Kuo CH; Huang LH; Su CC
    Waste Manag; 2017 Feb; 60():765-774. PubMed ID: 27810122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioleaching of metals from WEEE shredding dust.
    Marra A; Cesaro A; Rene ER; Belgiorno V; Lens PNL
    J Environ Manage; 2018 Mar; 210():180-190. PubMed ID: 29353112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gibbs Energy Minimization Model for Solvent Extraction with Application to Rare-Earths Recovery.
    Iloeje CO; Jové Colón CF; Cresko J; Graziano DJ
    Environ Sci Technol; 2019 Jul; 53(13):7736-7745. PubMed ID: 31157972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.
    Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ
    Biophys J; 1995 Dec; 69(6):2623-41. PubMed ID: 8599669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thin-layer chromatographic behavior of rare earths on silica gel with aqueous alkaline earth metal nitrate solutions as mobile phases.
    Takeda Y; Ishida K
    Fresenius J Anal Chem; 2001 Jun; 370(4):371-6. PubMed ID: 11495058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life cycle assessment of rare earths recovery from waste fluorescent powders - A case study in China.
    Yang D; Gao S; Hong J; Ye L; Ma X; Qi C; Li X
    Waste Manag; 2019 Nov; 99():60-70. PubMed ID: 31472441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities.
    Gutiérrez-Gutiérrez SC; Coulon F; Jiang Y; Wagland S
    Waste Manag; 2015 Aug; 42():128-36. PubMed ID: 25957938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogels dispersed by doped rare earth fluoride nanocrystals: ionic liquid dispersion and down/up-conversion luminescence.
    Yan ZY; Jia LP; Yan B
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():732-6. PubMed ID: 24388702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.