These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 31986668)
1. Promoter Effects on Iron-Silica Fischer-Tropsch Nanocatalysts: Conversion of Carbon Dioxide to Lower Olefins and Hydrocarbons at Atmospheric Pressure. Owen RE; O'Byrne JP; Mattia D; Plucinski P; Pascu SI; Jones MD Chempluschem; 2013 Dec; 78(12):1536-1544. PubMed ID: 31986668 [TBL] [Abstract][Full Text] [Related]
2. Selective Transformation of CO Dang S; Li S; Yang C; Chen X; Li X; Zhong L; Gao P; Sun Y ChemSusChem; 2019 Aug; 12(15):3582-3591. PubMed ID: 31197936 [TBL] [Abstract][Full Text] [Related]
3. Tandem Catalysis for CO Xie C; Chen C; Yu Y; Su J; Li Y; Somorjai GA; Yang P Nano Lett; 2017 Jun; 17(6):3798-3802. PubMed ID: 28493720 [TBL] [Abstract][Full Text] [Related]
4. Effect of graphitic carbon modification on the catalytic performance of Fe@SiO Ni Z; Qin H; Kang S; Bai J; Wang Z; Li Y; Zheng Z; Li X J Colloid Interface Sci; 2018 Apr; 516():16-22. PubMed ID: 29408102 [TBL] [Abstract][Full Text] [Related]
5. Towards Carbon-Neutral CO2 Conversion to Hydrocarbons. Mattia D; Jones MD; O'Byrne JP; Griffiths OG; Owen RE; Sackville E; McManus M; Plucinski P ChemSusChem; 2015 Dec; 8(23):4064-72. PubMed ID: 26564267 [TBL] [Abstract][Full Text] [Related]
6. Ruthenium-Loaded Halloysite Nanotubes as Mesocatalysts for Fischer-Tropsch Synthesis. Stavitskaya A; Mazurova K; Kotelev M; Eliseev O; Gushchin P; Glotov A; Kazantsev R; Vinokurov V; Lvov Y Molecules; 2020 Apr; 25(8):. PubMed ID: 32290415 [TBL] [Abstract][Full Text] [Related]
7. The Effect of Copper Addition on the Activity and Stability of Iron-Based CO₂ Hydrogenation Catalysts. Bradley MJ; Ananth R; Willauer HD; Baldwin JW; Hardy DR; Williams FW Molecules; 2017 Sep; 22(9):. PubMed ID: 28930186 [TBL] [Abstract][Full Text] [Related]
8. Sodium-Containing Spinel Zinc Ferrite as a Catalyst Precursor for the Selective Synthesis of Liquid Hydrocarbon Fuels. Choi YH; Ra EC; Kim EH; Kim KY; Jang YJ; Kang KN; Choi SH; Jang JH; Lee JS ChemSusChem; 2017 Dec; 10(23):4764-4770. PubMed ID: 29068558 [TBL] [Abstract][Full Text] [Related]
9. Shedding Light Onto the Nature of Iron Decorated Graphene and Graphite Oxide Nanohybrids for CO Owen RE; Cortezon-Tamarit F; Calatayud DG; Evans EA; Mitchell SIJ; Mao B; Palomares FJ; Mitchels J; Plucinski P; Mattia D; Jones MD; Pascu SI ChemistryOpen; 2020 Feb; 9(2):242-252. PubMed ID: 32149034 [TBL] [Abstract][Full Text] [Related]
10. Heterogeneous Catalytic Systems for Carbon Dioxide Hydrogenation to Value-Added Chemicals. Mirzakhani S; Yin BH; Masteri-Farahani M; Yip ACK Chempluschem; 2023 Jul; 88(7):e202300157. PubMed ID: 37263976 [TBL] [Abstract][Full Text] [Related]
11. Preparation of low carbon olefins on a core-shell K-Fe Liu Y; Shao W; Zheng Y; Zhang C; Zhou W; Zhang X; Liu Y RSC Adv; 2020 Jul; 10(44):26451-26459. PubMed ID: 35519778 [TBL] [Abstract][Full Text] [Related]
12. Unveiling the Activity Origin of Iron Nitride as Catalytic Material for Efficient Hydrogenation of CO Zhao B; Sun M; Chen F; Shi Y; Yu Y; Li X; Zhang B Angew Chem Int Ed Engl; 2021 Feb; 60(9):4496-4500. PubMed ID: 33206425 [TBL] [Abstract][Full Text] [Related]
13. Electrospun Fe-Al-O Nanobelts for Selective CO Elishav O; Shener Y; Beilin V; Landau MV; Herskowitz M; Shter GE; Grader GS ACS Appl Mater Interfaces; 2020 Jun; 12(22):24855-24867. PubMed ID: 32383847 [TBL] [Abstract][Full Text] [Related]
14. A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins. Ronda-Lloret M; Rothenberg G; Shiju NR ChemSusChem; 2019 Sep; 12(17):3896-3914. PubMed ID: 31166079 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of CO Owen RE; Mattia D; Plucinski P; Jones MD Chemphyschem; 2017 Nov; 18(22):3211-3218. PubMed ID: 28657678 [TBL] [Abstract][Full Text] [Related]
16. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins. Falkenhagen JP; Maisonneuve L; Paalanen PP; Coste N; Malicki N; Weckhuysen BM Chemistry; 2018 Mar; 24(18):4597-4606. PubMed ID: 29493817 [TBL] [Abstract][Full Text] [Related]
17. Size and Promoter Effects on Stability of Carbon-Nanofiber-Supported Iron-Based Fischer-Tropsch Catalysts. Xie J; Torres Galvis HM; Koeken AC; Kirilin A; Dugulan AI; Ruitenbeek M; de Jong KP ACS Catal; 2016 Jun; 6(6):4017-4024. PubMed ID: 27330847 [TBL] [Abstract][Full Text] [Related]
18. Controlled Nanostructure of Zeolite Crystal Encapsulating FeMnK Catalysts Targeting Light Olefins from Syngas. Zhu C; Zhang M; Huang C; Han Y; Fang K ACS Appl Mater Interfaces; 2020 Dec; 12(52):57950-57962. PubMed ID: 33337154 [TBL] [Abstract][Full Text] [Related]
19. Catalysts for the Conversion of CO Pawelec B; Guil-López R; Mota N; Fierro JLG; Navarro Yerga RM Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832354 [TBL] [Abstract][Full Text] [Related]
20. Modifying the Hydrogenation Activity of Zeolite Beta for Enhancing the Yield and Selectivity for Fuel-Range Alkanes from Carbon Dioxide. Dokania A; Ramirez A; Shterk G; Cerrillo JL; Gascon J Chempluschem; 2022 Jun; 87(6):e202200177. PubMed ID: 35695481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]