BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31986879)

  • 1. Anchoring IrPdAu Nanoparticles on NH
    Luo Y; Yang Q; Nie W; Yao Q; Zhang Z; Lu ZH
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8082-8090. PubMed ID: 31986879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafine PdAu nanoparticles immobilized on amine functionalized carbon black toward fast dehydrogenation of formic acid at room temperature.
    Wu L; Ni B; Chen R; Shi C; Sun P; Chen T
    Nanoscale Adv; 2019 Nov; 1(11):4415-4421. PubMed ID: 36134405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH
    Yan JM; Li SJ; Yi SS; Wulan BR; Zheng WT; Jiang Q
    Adv Mater; 2018 Mar; 30(12):e1703038. PubMed ID: 29411459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromic hydroxide-decorated palladium nanoparticles confined by amine-functionalized mesoporous silica for rapid dehydrogenation of formic acid.
    Ding Y; Peng W; Zhang L; Xia J; Feng G; Lu ZH
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):879-887. PubMed ID: 36306599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH)
    Sun X; Zhang G; Yao Q; Li H; Feng G; Lu ZH
    Inorg Chem; 2022 Nov; 61(45):18102-18111. PubMed ID: 36325636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of palladium silver nanoparticles on NH
    Han J; Zhang Z; Hao Z; Li G; Liu T
    J Colloid Interface Sci; 2021 Apr; 587():736-742. PubMed ID: 33223240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anchoring Pd-nanoparticles on dithiocarbamate- functionalized SBA-15 for hydrogen generation from formic acid.
    Farajzadeh M; Alamgholiloo H; Nasibipour F; Banaei R; Rostamnia S
    Sci Rep; 2020 Oct; 10(1):18188. PubMed ID: 33097804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved hydrogen evolution performance by engineering bimetallic AuPd loaded on amino and nitrogen functionalized mesoporous hollow carbon spheres.
    Wang L; Zhao Z; Wang H; Chi Y
    RSC Adv; 2022 Apr; 12(19):11732-11739. PubMed ID: 35481096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon bowl-confined subnanometric palladium-gold clusters for formic acid dehydrogenation and hexavalent chromium reduction.
    Sun X; Ding Y; Feng G; Yao Q; Zhu J; Xia J; Lu ZH
    J Colloid Interface Sci; 2023 Sep; 645():676-684. PubMed ID: 37167916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PdAg Nanoparticles within Core-Shell Structured Zeolitic Imidazolate Framework as a Dual Catalyst for Formic Acid-based Hydrogen Storage/Production.
    Wen M; Mori K; Futamura Y; Kuwahara Y; Navlani-García M; An T; Yamashita H
    Sci Rep; 2019 Oct; 9(1):15675. PubMed ID: 31666596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of AuPd nanoparticles anchored on TiO
    Jiang Y; Chen M; Yang Y; Zhang X; Xiao X; Fan X; Wang C; Chen L
    Nanotechnology; 2018 Aug; 29(33):335402. PubMed ID: 29794333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amine grafted silica supported CrAuPd alloy nanoparticles: superb heterogeneous catalysts for the room temperature dehydrogenation of formic acid.
    Yurderi M; Bulut A; Caner N; Celebi M; Kaya M; Zahmakiran M
    Chem Commun (Camb); 2015 Jul; 51(57):11417-20. PubMed ID: 26087033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoporous Silica Supported Pd-MnO
    Jin MH; Oh D; Park JH; Lee CB; Lee SW; Park JS; Lee KY; Lee DW
    Sci Rep; 2016 Sep; 6():33502. PubMed ID: 27666280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yolk-shell silica dioxide spheres @ metal-organic framework immobilized Ni/Mo nanoparticles as an effective catalyst for formic acid dehydrogenation at low temperature.
    Prabu S; Chiang KY
    J Colloid Interface Sci; 2021 Dec; 604():584-595. PubMed ID: 34280756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amine-Functionalized Natural Halloysite Nanotubes Supported Metallic (Pd, Au, Ag) Nanoparticles and Their Catalytic Performance for Dehydrogenation of Formic Acid.
    Song L; Tan K; Ye Y; Zhu B; Zhang S; Huang W
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amine-functionalized Schiff base covalent organic frameworks supported PdAuIr nanoparticles as high-performance catalysts for formic acid dehydrogenation and hexavalent chromium reduction.
    Guo X; Di X; Tang T; Shi Y; Liu D; Wang W; Liu Z; Ji X; Shao X
    J Colloid Interface Sci; 2024 Mar; 658():362-372. PubMed ID: 38113545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen Production by Formic Acid Decomposition over Ca Promoted Ni/SiO
    Faroldi B; Paviotti MA; Camino-Manjarrés M; González-Carrazán S; López-Olmos C; Rodríguez-Ramos I
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenylamine-functionalized mesoporous silica supported PdAg nanoparticles: a dual heterogeneous catalyst for formic acid/CO
    Mori K; Masuda S; Tanaka H; Yoshizawa K; Che M; Yamashita H
    Chem Commun (Camb); 2017 Apr; 53(34):4677-4680. PubMed ID: 28345106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.