These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31986887)

  • 1. Floor- or Ceiling-Sliding for Chemically Active, Gyrotactic, Sedimenting Janus Particles.
    Das S; Jalilvand Z; Popescu MN; Uspal WE; Dietrich S; Kretzschmar I
    Langmuir; 2020 Jun; 36(25):7133-7147. PubMed ID: 31986887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective Interactions between Chemically Active Colloids and Interfaces.
    Popescu MN; Uspal WE; Domínguez A; Dietrich S
    Acc Chem Res; 2018 Dec; 51(12):2991-2997. PubMed ID: 30403132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-propulsion in 2D confinement: phoretic and hydrodynamic interactions.
    Choudhary A; Chaithanya KVS; Michelin S; Pushpavanam S
    Eur Phys J E Soft Matter; 2021 Jul; 44(7):97. PubMed ID: 34283325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics near planar walls for various model self-phoretic particles.
    Bayati P; Popescu MN; Uspal WE; Dietrich S; Najafi A
    Soft Matter; 2019 Jul; 15(28):5644-5672. PubMed ID: 31245803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering.
    Uspal WE; Popescu MN; Dietrich S; Tasinkevych M
    Soft Matter; 2015 Jan; 11(3):434-8. PubMed ID: 25466926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Janus colloids at chemically structured surfaces.
    Uspal WE; Popescu MN; Dietrich S; Tasinkevych M
    J Chem Phys; 2019 May; 150(20):204904. PubMed ID: 31153178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring non-equilibrium interactions from tracer response near confined active Janus particles.
    Katuri J; Uspal WE; Popescu MN; Sánchez S
    Sci Adv; 2021 Apr; 7(18):. PubMed ID: 33931441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients.
    Popescu MN; Uspal WE; Dietrich S
    J Phys Condens Matter; 2017 Apr; 29(13):134001. PubMed ID: 28140364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbits, Spirals, and Trapped States: Dynamics of a Phoretic Janus Particle in a Radial Concentration Gradient.
    Bayati P; Mallory SA
    ACS Nano; 2024 Aug; 18(34):23047-23057. PubMed ID: 39137334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guiding Catalytically Active Particles with Chemically Patterned Surfaces.
    Uspal WE; Popescu MN; Dietrich S; Tasinkevych M
    Phys Rev Lett; 2016 Jul; 117(4):048002. PubMed ID: 27494500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Propulsion and Active Motion of Janus Ellipsoids.
    Shemi O; Solomon MJ
    J Phys Chem B; 2018 Nov; 122(44):10247-10255. PubMed ID: 30350989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically Active Particles: From One to Few on the Way to Many.
    Popescu MN
    Langmuir; 2020 Jun; 36(25):6861-6870. PubMed ID: 32233489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversed Janus Micro/Nanomotors with Internal Chemical Engine.
    Ma X; Jang S; Popescu MN; Uspal WE; Miguel-López A; Hahn K; Kim DP; Sánchez S
    ACS Nano; 2016 Sep; 10(9):8751-9. PubMed ID: 27598543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheotaxis of spherical active particles near a planar wall.
    Uspal WE; Popescu MN; Dietrich S; Tasinkevych M
    Soft Matter; 2015 Sep; 11(33):6613-32. PubMed ID: 26200672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driven Engulfment of Janus Particles by Giant Vesicles in and out of Thermal Equilibrium.
    Sharma V; Marques CM; Stocco A
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental observation of flow fields around active Janus spheres.
    Campbell AI; Ebbens SJ; Illien P; Golestanian R
    Nat Commun; 2019 Sep; 10(1):3952. PubMed ID: 31477703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holographic analysis of colloidal spheres sedimenting in horizontal slit pores.
    Altman LE; Grier DG
    Phys Rev E; 2022 Oct; 106(4-1):044605. PubMed ID: 36397531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting and orientation of catalytic Janus colloids at the surface of water.
    Wang X; In M; Blanc C; Malgaretti P; Nobili M; Stocco A
    Faraday Discuss; 2016 Oct; 191():305-324. PubMed ID: 27412240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of frequency and gravity on the orientation of active metallo-dielectric Janus particles translating under a uniform applied alternating-current electric field.
    Boymelgreen A; Kunti G; García-Sánchez P; Yossifon G
    Soft Matter; 2024 May; 20(20):4143-4151. PubMed ID: 38738604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective squirmer models for self-phoretic chemically active spherical colloids.
    Popescu MN; Uspal WE; Eskandari Z; Tasinkevych M; Dietrich S
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):145. PubMed ID: 30569319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.