These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31987139)

  • 1. A multi-thermal-lens approach to evaluation of multi-pass probe beam configuration in thermal lens spectrometry.
    Cabrera H; Goljat L; Korte D; Marín E; Franko M
    Anal Chim Acta; 2020 Mar; 1100():182-190. PubMed ID: 31987139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace detection and photothermal spectral characterization by a tuneable thermal lens spectrometer with white-light excitation.
    Cabrera H; Akbar J; Korte D; Ramírez-Miquet EE; Marín E; Niemela J; Ebrahimpour Z; Mannatunga K; Franko M
    Talanta; 2018 Jun; 183():158-163. PubMed ID: 29567158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Optical Configuration of Crossed-Beam Photothermal Lens Spectrometer Operating at High Flow Velocities and Its Application for Cysteine Determination in Human Serum and Saliva.
    Yoosefian J; Alizadeh N
    Anal Chem; 2018 Jul; 90(13):8227-8233. PubMed ID: 29869876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Very low optical absorptions and analyte concentrations in water measured by Optimized Thermal Lens Spectrometry.
    Cruz RA; Filadelpho MC; Castro MP; Andrade AA; Souza CM; Catunda T
    Talanta; 2011 Aug; 85(2):850-8. PubMed ID: 21726709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Differential Thermal Lens Spectrometry Method for Trace Detection.
    Cedeño E; Zuleta R; Mejorada Sánchez JL; Alvarado S; Marín E
    Appl Spectrosc; 2024 Jun; 78(6):644-649. PubMed ID: 38378011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: experiment.
    Zhang X; Li B
    Rev Sci Instrum; 2015 Feb; 86(2):024902. PubMed ID: 25725872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorption Spectra of Ethanol and Water Using a Photothermal Lens Spectrophotometer.
    Cabrera H; Akbar J; Korte D; Ashraf I; Ramírez-Miquet EE; Marín E; Niemela J
    Appl Spectrosc; 2018 Jul; 72(7):1069-1073. PubMed ID: 29381092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of light-absorbing layers at inner capillary surface by cw excitation crossed-beam thermal-lens spectrometry.
    Nedosekin DA; Faubel W; Proskurnin MA; Pyell U
    Talanta; 2009 May; 78(3):682-90. PubMed ID: 19269412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode-mismatched confocal thermal-lens microscope with collimated probe beam.
    Cabrera H; Korte D; Franko M
    Rev Sci Instrum; 2015 May; 86(5):053701. PubMed ID: 26026526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsed-laser mode-mismatched crossed-beam thermal lens spectrometry within a small capillary tube: effect of flow rate and beam offset on the photothermal signal.
    Chanlon S; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Jun; 58(8):1607-13. PubMed ID: 12166732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved thermal lens spectroscopy with a single-pulsed laser excitation beam: an analytical model for dual-beam mode-mismatched experiments.
    Sabaeian M; Rezaei H; Ghalambor-Dezfouli A
    Appl Opt; 2017 Feb; 56(4):999-1005. PubMed ID: 28158105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in thermal lens spectrometry and its applications in microscale analytical devices.
    Liu M; Franko M
    Crit Rev Anal Chem; 2014; 44(4):328-53. PubMed ID: 25391720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat coupling effect on photothermal detection with a moving Gaussian excitation beam.
    Dong J; Lu R
    Appl Opt; 2019 Nov; 58(31):8695-8701. PubMed ID: 31873350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal optimisation in cw-laser crossed-beam photothermal spectrometry: influence of the chopping frequency, sample size and flow rate.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):2849-55. PubMed ID: 16165023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous laser-induced fluorescence, coaxial thermal lens spectroscopy and retro-reflected beam interference detection for capillary electrophoresis.
    Xiong B; Wang W; Miao X; Liu L; Wang L; Zhou X; Hu J
    Talanta; 2012 Jan; 88():168-74. PubMed ID: 22265483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of the thermal lens signal induced by sample matrix absorption of the probe laser beam.
    Grishko VI; Tran CD; Duley WW
    Appl Opt; 2002 Sep; 41(27):5814-22. PubMed ID: 12269581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser induced-thermal lens spectrometry in combination with dispersive liquid-liquid microextraction for trace analysis.
    Shokoufi N; Hamdamali A
    Anal Chim Acta; 2010 Nov; 681(1-2):56-62. PubMed ID: 21035603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple bifurcations with signal enhancement in nonlinear mid-infrared thermal lens spectroscopy.
    Totachawattana A; Hong MK; Erramilli S; Sander MY
    Analyst; 2017 May; 142(11):1882-1890. PubMed ID: 28275761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of Iron in Environmental Water Samples by FIA-TLS.
    Korte D; Tomsič G; Bratkič A; Franko M; Budasheva H
    Acta Chim Slov; 2019 Dec; 66(4):814-820. PubMed ID: 34057491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination.
    Tokeshi M; Uchida M; Hibara A; Sawada T; Kitamori T
    Anal Chem; 2001 May; 73(9):2112-6. PubMed ID: 11354498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.