BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 31987840)

  • 1. Molecular changes in hepatic metabolism in ZDSD rats-A new polygenic rodent model of obesity, metabolic syndrome, and diabetes.
    Han L; Bittner S; Dong D; Cortez Y; Bittner A; Chan J; Umar M; Shen WJ; Peterson RG; Kraemer FB; Azhar S
    Biochim Biophys Acta Mol Basis Dis; 2020 May; 1866(5):165688. PubMed ID: 31987840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the ZDSD Rat: A Translational Model for the Study of Metabolic Syndrome and Type 2 Diabetes.
    Peterson RG; Jackson CV; Zimmerman K; de Winter W; Huebert N; Hansen MK
    J Diabetes Res; 2015; 2015():487816. PubMed ID: 25961053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zucker Diabetic-Sprague Dawley (ZDSD) rat: Type 2 diabetes translational research model.
    Wang AN; Carlos J; Fraser GM; McGuire JJ
    Exp Physiol; 2022 Apr; 107(4):265-282. PubMed ID: 35178802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wound Healing Delay in the ZDSD Rat.
    Suckow MA; Gobbett TA; Peterson RG
    In Vivo; 2017 Jan; 31(1):55-60. PubMed ID: 28064221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of diabetic neuropathy in the Zucker diabetic Sprague-Dawley rat: a new animal model for type 2 diabetes.
    Davidson EP; Coppey LJ; Holmes A; Lupachyk S; Dake BL; Oltman CL; Peterson RG; Yorek MA
    J Diabetes Res; 2014; 2014():714273. PubMed ID: 25371906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal changes associated with the onset of type 2 diabetes in the ZDF and ZDSD rodent models.
    Reinwald S; Peterson RG; Allen MR; Burr DB
    Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E765-74. PubMed ID: 19158319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of diabetes by Tacrolimus in a phenotypic model of obesity and metabolic syndrome.
    Teixidó-Trujillo S; Porrini E; Menéndez-Quintanal LM; Torres-Ramírez A; Fumero C; Rodríguez-Rodríguez AE
    Front Endocrinol (Lausanne); 2024; 15():1388361. PubMed ID: 38745946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of Liver Peroxisomal and Mitochondrial Functionality in the NZO Mouse Model of Metabolic Syndrome.
    Knebel B; Göddeke S; Hartwig S; Hörbelt T; Fahlbusch P; Al-Hasani H; Jacob S; Koellmer C; Nitzgen U; Schiller M; Lehr S; Kotzka J
    Proteomics Clin Appl; 2018 Jan; 12(1):. PubMed ID: 29068532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the Fracture Resistance of Bone with the Progression of Type 2 Diabetes in the ZDSD Rat.
    Creecy A; Uppuganti S; Merkel AR; O'Neal D; Makowski AJ; Granke M; Voziyan P; Nyman JS
    Calcif Tissue Int; 2016 Sep; 99(3):289-301. PubMed ID: 27209312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelium dysfunction in hind limb arteries of male Zucker Diabetic-Sprague Dawley rats.
    Wang AN; Carlos J; Singh KK; Fraser GM; McGuire JJ
    Biochem Pharmacol; 2022 Dec; 206():115319. PubMed ID: 36279920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the Disease Progression from Healthy to Overt Diabetes in ZDSD Rats.
    Choy S; de Winter W; Karlsson MO; Kjellsson MC
    AAPS J; 2016 Sep; 18(5):1203-1212. PubMed ID: 27245226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diet modification and its influence on metabolic and related pathological alterations in the SHR/NDmcr-cp rat, an animal model of the metabolic syndrome.
    Kawai K; Sakairi T; Harada S; Shinozuka J; Ide M; Sato H; Tanaka M; Toriumi W; Kume E
    Exp Toxicol Pathol; 2012 May; 64(4):333-8. PubMed ID: 20965707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence of the metabolic syndrome in childhood: an epidemiological overview and mechanistic link to dyslipidemia.
    Kohen-Avramoglu R; Theriault A; Adeli K
    Clin Biochem; 2003 Sep; 36(6):413-20. PubMed ID: 12951167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatic lipid metabolism and non-alcoholic fatty liver disease in aging.
    Gong Z; Tas E; Yakar S; Muzumdar R
    Mol Cell Endocrinol; 2017 Nov; 455():115-130. PubMed ID: 28017785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin resistance: a genetic approach. Overview.
    Martínez Larrad MT; González Sánchez JL; Serrano Ríos M
    Nestle Nutr Workshop Ser Clin Perform Programme; 2002; 6():79-93; discussion 93-5. PubMed ID: 16969968
    [No Abstract]   [Full Text] [Related]  

  • 16. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.
    Højlund K
    Dan Med J; 2014 Jul; 61(7):B4890. PubMed ID: 25123125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dysregulation of microRNA-125a contributes to obesity-associated insulin resistance and dysregulates lipid metabolism in mice.
    Liu R; Wang M; Li E; Yang Y; Li J; Chen S; Shen WJ; Azhar S; Guo Z; Hu Z
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 May; 1865(5):158640. PubMed ID: 31988048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic protease inhibitor camostat prevents and reverses dyslipidemia, insulin secretory defects, and histological abnormalities of the pancreas in genetically obese and diabetic rats.
    Jia D; Taguchi M; Otsuki M
    Metabolism; 2005 May; 54(5):619-27. PubMed ID: 15877292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pancreatic function of spontaneously diabetic torii rats in pre-diabetic stage.
    Matsui K; Oda T; Nishizawa E; Sano R; Yamamoto H; Fukuda S; Sasase T; Miyajima K; Ueda N; Ishii Y; Ohta T; Matsushita M
    Exp Anim; 2009 Jul; 58(4):363-74. PubMed ID: 19654434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.