These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 31987862)
1. Mechanistic investigation of bead-based padlock rolling circle amplification under molecular crowding conditions. Sasaki N; Kase C; Chou M; Nakazato G; Sato K Anal Biochem; 2020 Mar; 593():113596. PubMed ID: 31987862 [TBL] [Abstract][Full Text] [Related]
2. Molecular crowding improves bead-based padlock rolling circle amplification. Sasaki N; Gunji Y; Kase C; Sato K Anal Biochem; 2017 Feb; 519():15-18. PubMed ID: 27940012 [TBL] [Abstract][Full Text] [Related]
3. Bead-based Padlock Rolling Circle Amplification under Molecular Crowding Conditions: The Effects of Crowder Charge and Size. Sasaki N; Kase C; Sato K Anal Sci; 2021 May; 37(5):727-732. PubMed ID: 33487597 [TBL] [Abstract][Full Text] [Related]
4. Bead-based padlock rolling circle amplification for single DNA molecule counting. Sato K; Ishii R; Sasaki N; Sato K; Nilsson M Anal Biochem; 2013 Jun; 437(1):43-5. PubMed ID: 23467098 [TBL] [Abstract][Full Text] [Related]
5. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism. Zou Z; Qing Z; He X; Wang K; He D; Shi H; Yang X; Qing T; Yang X Talanta; 2014 Jul; 125():306-12. PubMed ID: 24840448 [TBL] [Abstract][Full Text] [Related]
6. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription. Mohsen MG; Kool ET Acc Chem Res; 2016 Nov; 49(11):2540-2550. PubMed ID: 27797171 [TBL] [Abstract][Full Text] [Related]
7. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification. Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296 [TBL] [Abstract][Full Text] [Related]
8. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification. Liu H; Li L; Duan L; Wang X; Xie Y; Tong L; Wang Q; Tang B Anal Chem; 2013 Aug; 85(16):7941-7. PubMed ID: 23855808 [TBL] [Abstract][Full Text] [Related]
9. Integration of rolling circle amplification and optomagnetic detection on a polymer chip. Garbarino F; Minero GAS; Rizzi G; Fock J; Hansen MF Biosens Bioelectron; 2019 Oct; 142():111485. PubMed ID: 31301578 [TBL] [Abstract][Full Text] [Related]
10. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs. Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196 [TBL] [Abstract][Full Text] [Related]
11. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid. Xue Q; Lv Y; Cui H; Gu X; Zhang S; Liu J Anal Chim Acta; 2015 Jan; 856():103-9. PubMed ID: 25542364 [TBL] [Abstract][Full Text] [Related]
12. Microbead-based rolling circle amplification in a microchip for sensitive DNA detection. Sato K; Tachihara A; Renberg B; Mawatari K; Sato K; Tanaka Y; Jarvius J; Nilsson M; Kitamori T Lab Chip; 2010 May; 10(10):1262-6. PubMed ID: 20445878 [TBL] [Abstract][Full Text] [Related]
13. Recent advances in rolling circle amplification-based biosensing strategies-A review. Xu L; Duan J; Chen J; Ding S; Cheng W Anal Chim Acta; 2021 Mar; 1148():238187. PubMed ID: 33516384 [TBL] [Abstract][Full Text] [Related]
14. An isothermal and sensitive nucleic acids assay by target sequence recycled rolling circle amplification. Long Y; Zhou X; Xing D Biosens Bioelectron; 2013 Aug; 46():102-7. PubMed ID: 23517825 [TBL] [Abstract][Full Text] [Related]
15. In situ hybridization assay for circular RNA visualization based on padlock probe and rolling circle amplification. Lin C; Xiao Z; Zhang X; Wu G Biochem Biophys Res Commun; 2022 Jun; 610():30-34. PubMed ID: 35430449 [TBL] [Abstract][Full Text] [Related]
16. Padlock probe-based rolling circle amplification lateral flow assay for point-of-need nucleic acid detection. Jain S; Dandy DS; Geiss BJ; Henry CS Analyst; 2021 Jun; 146(13):4340-4347. PubMed ID: 34106115 [TBL] [Abstract][Full Text] [Related]
17. Single-molecule DNA patterning and detection by padlock probing and rolling circle amplification in microchannels for analysis of small sample volumes. Tanaka Y; Xi H; Sato K; Mawatari K; Renberg B; Nilsson M; Kitamori T Anal Chem; 2011 May; 83(9):3352-7. PubMed ID: 21462922 [TBL] [Abstract][Full Text] [Related]
18. Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. Cho EJ; Yang L; Levy M; Ellington AD J Am Chem Soc; 2005 Feb; 127(7):2022-3. PubMed ID: 15713061 [TBL] [Abstract][Full Text] [Related]
19. Effects of Microchannel Shape and Ultrasonic Mixing on Microfluidic Padlock Probe Rolling Circle Amplification (RCA) Reactions. Ishigaki Y; Sato K Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424205 [TBL] [Abstract][Full Text] [Related]
20. CE combined with rolling circle amplification for sensitive DNA detection. Li N; Li J; Zhong W Electrophoresis; 2008 Jan; 29(2):424-32. PubMed ID: 18080251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]