These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 31988135)

  • 1. RNA sequencing by direct tagmentation of RNA/DNA hybrids.
    Di L; Fu Y; Sun Y; Li J; Liu L; Yao J; Wang G; Wu Y; Lao K; Lee RW; Zheng G; Xu J; Oh J; Wang D; Xie XS; Huang Y; Wang J
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2886-2893. PubMed ID: 31988135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transposase-assisted tagmentation of RNA/DNA hybrid duplexes.
    Lu B; Dong L; Yi D; Zhang M; Zhu C; Li X; Yi C
    Elife; 2020 Jul; 9():. PubMed ID: 32701057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects.
    Picelli S; Björklund AK; Reinius B; Sagasser S; Winberg G; Sandberg R
    Genome Res; 2014 Dec; 24(12):2033-40. PubMed ID: 25079858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TRACE-seq: Rapid, Low-Input, One-Tube RNA-seq Library Construction Based on Tagmentation of RNA/DNA Hybrids.
    Lu B; Yi C
    Curr Protoc; 2023 Apr; 3(4):e735. PubMed ID: 37014790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-Length Single-Cell RNA Sequencing with Smart-seq2.
    Picelli S
    Methods Mol Biol; 2019; 1979():25-44. PubMed ID: 31028630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple and novel method for RNA-seq library preparation of single cell cDNA analysis by hyperactive Tn5 transposase.
    Brouilette S; Kuersten S; Mein C; Bozek M; Terry A; Dias KR; Bhaw-Rosun L; Shintani Y; Coppen S; Ikebe C; Sawhney V; Campbell N; Kaneko M; Tano N; Ishida H; Suzuki K; Yashiro K
    Dev Dyn; 2012 Oct; 241(10):1584-90. PubMed ID: 22911638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Scale Low-Cost NGS Library Preparation Using a Robust Tn5 Purification and Tagmentation Protocol.
    Hennig BP; Velten L; Racke I; Tu CS; Thoms M; Rybin V; Besir H; Remans K; Steinmetz LM
    G3 (Bethesda); 2018 Jan; 8(1):79-89. PubMed ID: 29118030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for multimodal profiling of human kidneys with simultaneous high-throughput ATAC and RNA expression with sequencing.
    Li H; Humphreys BD
    STAR Protoc; 2024 Sep; 5(3):103049. PubMed ID: 38900631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost and time-efficient construction of a 3'-end mRNA library from unpurified bulk RNA in a single tube.
    Choi J; Hyun J; Hyun J; Kim JH; Lee JH; Bang D
    Exp Mol Med; 2024 Feb; 56(2):453-460. PubMed ID: 38413820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tn5Prime, a Tn5 based 5' capture method for single cell RNA-seq.
    Cole C; Byrne A; Beaudin AE; Forsberg EC; Vollmers C
    Nucleic Acids Res; 2018 Jun; 46(10):e62. PubMed ID: 29548006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of chromatin accessibility with a transposome hypersensitive sites sequencing (THS-seq) assay.
    Sos BC; Fung HL; Gao DR; Osothprarop TF; Kia A; He MM; Zhang K
    Genome Biol; 2016 Feb; 17():20. PubMed ID: 26846207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel strand-specific RNA-sequencing protocol using dU-adaptor-assembled Tn5.
    Tao X; Feng S; Li S; Chen G; Wang J; Xu L; Fu X; Yu J; Xu S
    J Exp Bot; 2023 Mar; 74(6):1806-1820. PubMed ID: 36585802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TELP, a sensitive and versatile library construction method for next-generation sequencing.
    Peng X; Wu J; Brunmeir R; Kim SY; Zhang Q; Ding C; Han W; Xie W; Xu F
    Nucleic Acids Res; 2015 Mar; 43(6):e35. PubMed ID: 25223787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and sensitive single-cell RNA sequencing with SHERRY2.
    Di L; Liu B; Lyu Y; Zhao S; Pang Y; Zhang C; Wang J; Qi H; Shen J; Huang Y
    BMC Biol; 2022 Sep; 20(1):213. PubMed ID: 36175891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for Converting RNA to Amplifiable cDNA for Single-Cell RNA Sequencing Methods.
    Sasagawa Y; Hayashi T; Nikaido I
    Adv Exp Med Biol; 2019; 1129():1-17. PubMed ID: 30968357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries.
    Riemondy KA; Ransom M; Alderman C; Gillen AE; Fu R; Finlay-Schultz J; Kirkpatrick GD; Di Paola J; Kabos P; Sartorius CA; Hesselberth JR
    Nucleic Acids Res; 2019 Feb; 47(4):e20. PubMed ID: 30496484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell Tagged Reverse Transcription (STRT-Seq).
    Natarajan KN
    Methods Mol Biol; 2019; 1979():133-153. PubMed ID: 31028636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Cell RNA-Seq by Multiple Annealing and Tailing-Based Quantitative Single-Cell RNA-Seq (MATQ-Seq).
    Sheng K; Zong C
    Methods Mol Biol; 2019; 1979():57-71. PubMed ID: 31028632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell RNA-sequencing: The future of genome biology is now.
    Picelli S
    RNA Biol; 2017 May; 14(5):637-650. PubMed ID: 27442339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gel-seq: whole-genome and transcriptome sequencing by simultaneous low-input DNA and RNA library preparation using semi-permeable hydrogel barriers.
    Hoople GD; Richards A; Wu Y; Kaneko K; Luo X; Feng GS; Zhang K; Pisano AP
    Lab Chip; 2017 Jul; 17(15):2619-2630. PubMed ID: 28660979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.