BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 31988135)

  • 1. RNA sequencing by direct tagmentation of RNA/DNA hybrids.
    Di L; Fu Y; Sun Y; Li J; Liu L; Yao J; Wang G; Wu Y; Lao K; Lee RW; Zheng G; Xu J; Oh J; Wang D; Xie XS; Huang Y; Wang J
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2886-2893. PubMed ID: 31988135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transposase-assisted tagmentation of RNA/DNA hybrid duplexes.
    Lu B; Dong L; Yi D; Zhang M; Zhu C; Li X; Yi C
    Elife; 2020 Jul; 9():. PubMed ID: 32701057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects.
    Picelli S; Björklund AK; Reinius B; Sagasser S; Winberg G; Sandberg R
    Genome Res; 2014 Dec; 24(12):2033-40. PubMed ID: 25079858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TRACE-seq: Rapid, Low-Input, One-Tube RNA-seq Library Construction Based on Tagmentation of RNA/DNA Hybrids.
    Lu B; Yi C
    Curr Protoc; 2023 Apr; 3(4):e735. PubMed ID: 37014790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-Length Single-Cell RNA Sequencing with Smart-seq2.
    Picelli S
    Methods Mol Biol; 2019; 1979():25-44. PubMed ID: 31028630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple and novel method for RNA-seq library preparation of single cell cDNA analysis by hyperactive Tn5 transposase.
    Brouilette S; Kuersten S; Mein C; Bozek M; Terry A; Dias KR; Bhaw-Rosun L; Shintani Y; Coppen S; Ikebe C; Sawhney V; Campbell N; Kaneko M; Tano N; Ishida H; Suzuki K; Yashiro K
    Dev Dyn; 2012 Oct; 241(10):1584-90. PubMed ID: 22911638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Scale Low-Cost NGS Library Preparation Using a Robust Tn5 Purification and Tagmentation Protocol.
    Hennig BP; Velten L; Racke I; Tu CS; Thoms M; Rybin V; Besir H; Remans K; Steinmetz LM
    G3 (Bethesda); 2018 Jan; 8(1):79-89. PubMed ID: 29118030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost and time-efficient construction of a 3'-end mRNA library from unpurified bulk RNA in a single tube.
    Choi J; Hyun J; Hyun J; Kim JH; Lee JH; Bang D
    Exp Mol Med; 2024 Feb; 56(2):453-460. PubMed ID: 38413820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tn5Prime, a Tn5 based 5' capture method for single cell RNA-seq.
    Cole C; Byrne A; Beaudin AE; Forsberg EC; Vollmers C
    Nucleic Acids Res; 2018 Jun; 46(10):e62. PubMed ID: 29548006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of chromatin accessibility with a transposome hypersensitive sites sequencing (THS-seq) assay.
    Sos BC; Fung HL; Gao DR; Osothprarop TF; Kia A; He MM; Zhang K
    Genome Biol; 2016 Feb; 17():20. PubMed ID: 26846207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel strand-specific RNA-sequencing protocol using dU-adaptor-assembled Tn5.
    Tao X; Feng S; Li S; Chen G; Wang J; Xu L; Fu X; Yu J; Xu S
    J Exp Bot; 2023 Mar; 74(6):1806-1820. PubMed ID: 36585802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TELP, a sensitive and versatile library construction method for next-generation sequencing.
    Peng X; Wu J; Brunmeir R; Kim SY; Zhang Q; Ding C; Han W; Xie W; Xu F
    Nucleic Acids Res; 2015 Mar; 43(6):e35. PubMed ID: 25223787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and sensitive single-cell RNA sequencing with SHERRY2.
    Di L; Liu B; Lyu Y; Zhao S; Pang Y; Zhang C; Wang J; Qi H; Shen J; Huang Y
    BMC Biol; 2022 Sep; 20(1):213. PubMed ID: 36175891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for Converting RNA to Amplifiable cDNA for Single-Cell RNA Sequencing Methods.
    Sasagawa Y; Hayashi T; Nikaido I
    Adv Exp Med Biol; 2019; 1129():1-17. PubMed ID: 30968357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries.
    Riemondy KA; Ransom M; Alderman C; Gillen AE; Fu R; Finlay-Schultz J; Kirkpatrick GD; Di Paola J; Kabos P; Sartorius CA; Hesselberth JR
    Nucleic Acids Res; 2019 Feb; 47(4):e20. PubMed ID: 30496484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Cell Tagged Reverse Transcription (STRT-Seq).
    Natarajan KN
    Methods Mol Biol; 2019; 1979():133-153. PubMed ID: 31028636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell RNA-Seq by Multiple Annealing and Tailing-Based Quantitative Single-Cell RNA-Seq (MATQ-Seq).
    Sheng K; Zong C
    Methods Mol Biol; 2019; 1979():57-71. PubMed ID: 31028632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell RNA-sequencing: The future of genome biology is now.
    Picelli S
    RNA Biol; 2017 May; 14(5):637-650. PubMed ID: 27442339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gel-seq: whole-genome and transcriptome sequencing by simultaneous low-input DNA and RNA library preparation using semi-permeable hydrogel barriers.
    Hoople GD; Richards A; Wu Y; Kaneko K; Luo X; Feng GS; Zhang K; Pisano AP
    Lab Chip; 2017 Jul; 17(15):2619-2630. PubMed ID: 28660979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposase mediated construction of RNA-seq libraries.
    Gertz J; Varley KE; Davis NS; Baas BJ; Goryshin IY; Vaidyanathan R; Kuersten S; Myers RM
    Genome Res; 2012 Jan; 22(1):134-41. PubMed ID: 22128135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.