BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 31988518)

  • 1. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies.
    Sun S; Zhu J; Zhou X
    Nat Methods; 2020 Feb; 17(2):193-200. PubMed ID: 31988518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies.
    Zhu J; Sun S; Zhou X
    Genome Biol; 2021 Jun; 22(1):184. PubMed ID: 34154649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities.
    Miller BF; Bambah-Mukku D; Dulac C; Zhuang X; Fan J
    Genome Res; 2021 Oct; 31(10):1843-1855. PubMed ID: 34035045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical analysis of spatially resolved transcriptomic data by incorporating multiomics auxiliary information.
    Li Y; Zhou X; Cao H
    Genetics; 2022 Jul; 221(4):. PubMed ID: 35731210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SpatialDB: a database for spatially resolved transcriptomes.
    Fan Z; Chen R; Chen X
    Nucleic Acids Res; 2020 Jan; 48(D1):D233-D237. PubMed ID: 31713629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk.
    Shao X; Li C; Yang H; Lu X; Liao J; Qian J; Wang K; Cheng J; Yang P; Chen H; Xu X; Fan X
    Nat Commun; 2022 Jul; 13(1):4429. PubMed ID: 35908020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable selection for binary spatial regression: Penalized quasi-likelihood approach.
    Feng W; Sarkar A; Lim CY; Maiti T
    Biometrics; 2016 Dec; 72(4):1164-1172. PubMed ID: 27061299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SpatialMap: Spatial Mapping of Unmeasured Gene Expression Profiles in Spatial Transcriptomic Data Using Generalized Linear Spatial Models.
    Gao D; Ning J; Liu G; Sun S; Dang X
    Front Genet; 2022; 13():893522. PubMed ID: 35692845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. JUMP: replicability analysis of high-throughput experiments with applications to spatial transcriptomic studies.
    Lyu P; Li Y; Wen X; Cao H
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37279733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SC-MEB: spatial clustering with hidden Markov random field using empirical Bayes.
    Yang Y; Shi X; Liu W; Zhou Q; Chan Lau M; Chun Tatt Lim J; Sun L; Ng CCY; Yeong J; Liu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics.
    Liang Y; Shi G; Cai R; Yuan Y; Xie Z; Yu L; Huang Y; Shi Q; Wang L; Li J; Tang Z
    Nat Commun; 2024 Jan; 15(1):600. PubMed ID: 38238417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SINFONIA: Scalable Identification of Spatially Variable Genes for Deciphering Spatial Domains.
    Jiang R; Li Z; Jia Y; Li S; Chen S
    Cells; 2023 Feb; 12(4):. PubMed ID: 36831270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network.
    Hu J; Li X; Coleman K; Schroeder A; Ma N; Irwin DJ; Lee EB; Shinohara RT; Li M
    Nat Methods; 2021 Nov; 18(11):1342-1351. PubMed ID: 34711970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially aware dimension reduction for spatial transcriptomics.
    Shang L; Zhou X
    Nat Commun; 2022 Nov; 13(1):7203. PubMed ID: 36418351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate inference of genome-wide spatial expression with iSpatial.
    Zhang C; Chen R; Zhang Y
    Sci Adv; 2022 Aug; 8(34):eabq0990. PubMed ID: 36026447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian hidden mark interaction model for detecting spatially variable genes in imaging-based spatially resolved transcriptomics data.
    Yang J; Jiang X; Jin KW; Shin S; Li Q
    Front Genet; 2024; 15():1356709. PubMed ID: 38725485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian Hidden Mark Interaction Model for Detecting Spatially Variable Genes in Imaging-Based Spatially Resolved Transcriptomics Data.
    Yang J; Jiang X; Jin KW; Shin S; Li Q
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matisse: a MATLAB-based analysis toolbox for in situ sequencing expression maps.
    Marco Salas S; Gyllborg D; Mattsson Langseth C; Nilsson M
    BMC Bioinformatics; 2021 Jul; 22(1):391. PubMed ID: 34332548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DESpace: spatially variable gene detection via differential expression testing of spatial clusters.
    Cai P; Robinson MD; Tiberi S
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38243704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of molecular features underlying the morphological landscape by integrating spatial transcriptomic data with deep features of tissue images.
    Bae S; Choi H; Lee DS
    Nucleic Acids Res; 2021 Jun; 49(10):e55. PubMed ID: 33619564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.