These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 31988518)

  • 21. Spatiotemporal analysis of human intestinal development at single-cell resolution.
    Fawkner-Corbett D; Antanaviciute A; Parikh K; Jagielowicz M; Gerós AS; Gupta T; Ashley N; Khamis D; Fowler D; Morrissey E; Cunningham C; Johnson PRV; Koohy H; Simmons A
    Cell; 2021 Feb; 184(3):810-826.e23. PubMed ID: 33406409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids.
    van den Brink SC; Alemany A; van Batenburg V; Moris N; Blotenburg M; Vivié J; Baillie-Johnson P; Nichols J; Sonnen KF; Martinez Arias A; van Oudenaarden A
    Nature; 2020 Jun; 582(7812):405-409. PubMed ID: 32076263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography.
    Andersson A; Bergenstråhle J; Asp M; Bergenstråhle L; Jurek A; Fernández Navarro J; Lundeberg J
    Commun Biol; 2020 Oct; 3(1):565. PubMed ID: 33037292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2.
    Stickels RR; Murray E; Kumar P; Li J; Marshall JL; Di Bella DJ; Arlotta P; Macosko EZ; Chen F
    Nat Biotechnol; 2021 Mar; 39(3):313-319. PubMed ID: 33288904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-layered Spatial Transcriptomics Identify Secretory Factors Promoting Human Hematopoietic Stem Cell Development.
    Crosse EI; Gordon-Keylock S; Rybtsov S; Binagui-Casas A; Felchle H; Nnadi NC; Kirschner K; Chandra T; Tamagno S; Webb DJ; Rossi F; Anderson RA; Medvinsky A
    Cell Stem Cell; 2020 Nov; 27(5):822-839.e8. PubMed ID: 32946788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrative differential expression and gene set enrichment analysis using summary statistics for scRNA-seq studies.
    Ma Y; Sun S; Shang X; Keller ET; Chen M; Zhou X
    Nat Commun; 2020 Mar; 11(1):1585. PubMed ID: 32221292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SpaGE: Spatial Gene Enhancement using scRNA-seq.
    Abdelaal T; Mourragui S; Mahfouz A; Reinders MJT
    Nucleic Acids Res; 2020 Oct; 48(18):e107. PubMed ID: 32955565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes.
    Elosua-Bayes M; Nieto P; Mereu E; Gut I; Heyn H
    Nucleic Acids Res; 2021 May; 49(9):e50. PubMed ID: 33544846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatially resolved single-cell genomics and transcriptomics by imaging.
    Zhuang X
    Nat Methods; 2021 Jan; 18(1):18-22. PubMed ID: 33408406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes.
    Efremova M; Vento-Tormo M; Teichmann SA; Vento-Tormo R
    Nat Protoc; 2020 Apr; 15(4):1484-1506. PubMed ID: 32103204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inferring spatial and signaling relationships between cells from single cell transcriptomic data.
    Cang Z; Nie Q
    Nat Commun; 2020 Apr; 11(1):2084. PubMed ID: 32350282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex.
    Maynard KR; Collado-Torres L; Weber LM; Uytingco C; Barry BK; Williams SR; Catallini JL; Tran MN; Besich Z; Tippani M; Chew J; Yin Y; Kleinman JE; Hyde TM; Rao N; Hicks SC; Martinowich K; Jaffe AE
    Nat Neurosci; 2021 Mar; 24(3):425-436. PubMed ID: 33558695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From whole-mount to single-cell spatial assessment of gene expression in 3D.
    Waylen LN; Nim HT; Martelotto LG; Ramialison M
    Commun Biol; 2020 Oct; 3(1):602. PubMed ID: 33097816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatially resolved transcriptomics adds a new dimension to genomics.
    Larsson L; Frisén J; Lundeberg J
    Nat Methods; 2021 Jan; 18(1):15-18. PubMed ID: 33408402
    [No Abstract]   [Full Text] [Related]  

  • 35. Exploring tissue architecture using spatial transcriptomics.
    Rao A; Barkley D; França GS; Yanai I
    Nature; 2021 Aug; 596(7871):211-220. PubMed ID: 34381231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence.
    Song Q; Su J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33480403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstruction of cell spatial organization from single-cell RNA sequencing data based on ligand-receptor mediated self-assembly.
    Ren X; Zhong G; Zhang Q; Zhang L; Sun Y; Zhang Z
    Cell Res; 2020 Sep; 30(9):763-778. PubMed ID: 32541867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatially Resolved Transcriptomes-Next Generation Tools for Tissue Exploration.
    Asp M; Bergenstråhle J; Lundeberg J
    Bioessays; 2020 Oct; 42(10):e1900221. PubMed ID: 32363691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies.
    Zhu J; Sun S; Zhou X
    Genome Biol; 2021 Jun; 22(1):184. PubMed ID: 34154649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics.
    Longo SK; Guo MG; Ji AL; Khavari PA
    Nat Rev Genet; 2021 Oct; 22(10):627-644. PubMed ID: 34145435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.