These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31988542)

  • 21. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter.
    Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anionic nanoparticle and microplastic non-exponential distributions from source scale with grain size in environmental granular media.
    Johnson WP; Rasmuson A; Ron C; Erickson B; VanNess K; Bolster D; Peters B
    Water Res; 2020 Sep; 182():116012. PubMed ID: 32730996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analytic solutions for colloid transport with time- and depth-dependent retention in porous media.
    Leij FJ; Bradford SA; Sciortino A
    J Contam Hydrol; 2016 Dec; 195():40-51. PubMed ID: 27890296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rotation and Retention Dynamics of Rod-Shaped Colloids with Surface Charge Heterogeneity in Sphere-in-Cell Porous Media Model.
    Li K; Ma H
    Langmuir; 2019 Apr; 35(16):5471-5483. PubMed ID: 30925063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Favorable and unfavorable attachment of colloids in a discrete sandstone fracture.
    Spanik S; Rrokaj E; Mondal PK; Sleep BE
    J Contam Hydrol; 2021 Dec; 243():103919. PubMed ID: 34763243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrodynamic versus Surface Interaction Impacts of Roughness in Closing the Gap between Favorable and Unfavorable Colloid Transport Conditions.
    Rasmuson A; VanNess K; Ron CA; Johnson WP
    Environ Sci Technol; 2019 Mar; 53(5):2450-2459. PubMed ID: 30762346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distribution of colloid particles onto interfaces in partially saturated sand.
    Zevi Y; Dathe A; McCarthy JF; Richards BK; Steenhuis TS
    Environ Sci Technol; 2005 Sep; 39(18):7055-64. PubMed ID: 16201629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-Dimensional Visualization Reveals Pore-Scale Mechanisms of Colloid Transport and Retention in Two-Phase Flow.
    Wu T; Yang Z; Hu R; Chen YF
    Environ Sci Technol; 2023 Feb; 57(5):1997-2005. PubMed ID: 36602921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: a general phenomenon.
    Li X; Scheibe TD; Johnson WP
    Environ Sci Technol; 2004 Nov; 38(21):5616-25. PubMed ID: 15575280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacial interactions and colloid retention under steady flows in a capillary channel.
    Lazouskaya V; Jin Y; Or D
    J Colloid Interface Sci; 2006 Nov; 303(1):171-84. PubMed ID: 16930611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colloid transport in porous media: impact of hyper-saline solutions.
    Magal E; Weisbrod N; Yechieli Y; Walker SL; Yakirevich A
    Water Res; 2011 May; 45(11):3521-32. PubMed ID: 21550095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D pore-scale characterization of colloid aggregation and retention by confocal microscopy: Effects of fluid structure and ionic strength.
    Wu T; Chen Y; Yang Z
    Sci Total Environ; 2024 Mar; 917():170349. PubMed ID: 38280576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of Nanoparticle and Colloid Attachment on Unfavorable Mineral Surfaces Using Representative Discrete Heterogeneity.
    Trauscht J; Pazmino E; Johnson WP
    Langmuir; 2015 Sep; 31(34):9366-78. PubMed ID: 26263019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonmonotonic variations in deposition rate coefficients of microspheres in porous media under unfavorable deposition conditions.
    Li X; Johnson WP
    Environ Sci Technol; 2005 Mar; 39(6):1658-65. PubMed ID: 15819222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media.
    Bradford SA; Torkzaban S; Walker SL
    Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A robust upscaling of the effective particle deposition rate in porous media.
    Boccardo G; Crevacore E; Sethi R; Icardi M
    J Contam Hydrol; 2018 May; 212():3-13. PubMed ID: 28965708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications.
    Hahn MW; O'Meliae CR
    Environ Sci Technol; 2004 Jan; 38(1):210-20. PubMed ID: 14740738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of temporal moment analysis to interpret colloid and colloid-facilitated solute transport under varying size exclusion and attachment coefficient.
    Deb D; Chakma S
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77755-77770. PubMed ID: 35687282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transport of barrel and spherical shaped colloids in unsaturated porous media.
    Knappenberger T; Aramrak S; Flury M
    J Contam Hydrol; 2015 Sep; 180():69-79. PubMed ID: 26275396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Colloid retention at the meniscus-wall contact line in an open microchannel.
    Zevi Y; Gao B; Zhang W; Morales VL; Cakmak ME; Medrano EA; Sang W; Steenhuis TS
    Water Res; 2012 Feb; 46(2):295-306. PubMed ID: 22130000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.