These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3198872)

  • 1. Particle gathering and microstreaming near ultrasonically activated gas-filled micropores.
    Miller DL
    J Acoust Soc Am; 1988 Oct; 84(4):1378-87. PubMed ID: 3198872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of variations in biophysical conditions on hemolysis near ultrasonically activated gas-filled micropores.
    Miller DL; Thomas RM
    J Acoust Soc Am; 1990 May; 87(5):2225-30. PubMed ID: 2348026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of the ultrasonic bioeffects of microsonation, gas-body activation, and related cavitation-like phenomena.
    Miller DL
    Ultrasound Med Biol; 1987 Aug; 13(8):443-70. PubMed ID: 3310354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of hematocrit on hemolysis by ultrasonically activated gas-filled micropores.
    Miller DL
    Ultrasound Med Biol; 1988; 14(4):293-7. PubMed ID: 3413902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavitation microstreaming and stress fields created by microbubbles.
    Collis J; Manasseh R; Liovic P; Tho P; Ooi A; Petkovic-Duran K; Zhu Y
    Ultrasonics; 2010 Feb; 50(2):273-9. PubMed ID: 19896683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic microstreaming around an encapsulated particle.
    Doinikov AA; Bouakaz A
    J Acoust Soc Am; 2010 Mar; 127(3):1218-27. PubMed ID: 20329820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstreaming shear as a mechanism of cell death in Elodea leaves exposed to ultrasound.
    Miller DL
    Ultrasound Med Biol; 1985; 11(2):285-92. PubMed ID: 4035804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic cavitation series: part six. Gas body activation.
    Miller DL
    Ultrasonics; 1984 Nov; 22(6):261-9. PubMed ID: 6506324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the oscillation mode of gas-filled micropores.
    Miller DL; Neppiras EA
    J Acoust Soc Am; 1985 Mar; 77(3):946-53. PubMed ID: 3980878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of ultrasonically induced pulsations of gas-filled channels in Elodea.
    Martin CJ; Gemmell HG
    Phys Med Biol; 1979 May; 24(3):600-12. PubMed ID: 461519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-micron particle behaviour and capture at an immuno-sensor surface in an ultrasonic standing wave.
    Kuznetsova LA; Martin SP; Coakley WT
    Biosens Bioelectron; 2005 Dec; 21(6):940-8. PubMed ID: 16257663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonically induced intravascular streaming and thrombus formation adjacent to a micropipette.
    Frizzell LA; Miller DL; Nyborg WL
    Ultrasound Med Biol; 1986 Mar; 12(3):217-21. PubMed ID: 3962006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of particle shape and material on the acoustic radiation force and microstreaming in a standing wave.
    Pavlic A; Nagpure P; Ermanni L; Dual J
    Phys Rev E; 2022 Jul; 106(1-2):015105. PubMed ID: 35974560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stirring and mixing of liquids using acoustic radiation force.
    Sarvazyan A; Ostrovsky L
    J Acoust Soc Am; 2009 Jun; 125(6):3548-54. PubMed ID: 19507936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and numerical calculation of the acoustic radiation force acting on a circular rigid cylinder near a flat wall in a standing wave excitation in an ideal fluid.
    Wang J; Dual J
    Ultrasonics; 2012 Feb; 52(2):325-32. PubMed ID: 21975351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of 2-D colloidal particle aggregates held against flow stress in an ultrasound trap.
    Kuznetsova LA; Bazou D; Coakley WT
    Langmuir; 2007 Mar; 23(6):3009-16. PubMed ID: 17286416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic microstreaming and related phenomena.
    Nyborg WL
    Br J Cancer Suppl; 1982 Mar; 5():156-60. PubMed ID: 6950752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.