These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31988724)

  • 1. Phenotypic plasticity, but not adaptive tracking, underlies seasonal variation in post-cold hardening freeze tolerance of
    Stone HM; Erickson PA; Bergland AO
    Ecol Evol; 2020 Jan; 10(1):217-231. PubMed ID: 31988724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal variation in basal and plastic cold tolerance: Adaptation is influenced by both long- and short-term phenotypic plasticity.
    Noh S; Everman ER; Berger CM; Morgan TJ
    Ecol Evol; 2017 Jul; 7(14):5248-5257. PubMed ID: 28770063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival.
    Shearer PW; West JD; Walton VM; Brown PH; Svetec N; Chiu JC
    BMC Ecol; 2016 Mar; 16():11. PubMed ID: 27001084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastic changes in cold and drought tolerance of Drosophila nepalensis correlate with sex-specific differences in body melanization, cuticular lipid mass, proline accumulation, and seasonal abundance.
    Parkash R; Lambhod C
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Aug; 258():110985. PubMed ID: 34023536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental thermal plasticity among Drosophila melanogaster populations.
    Fallis LC; Fanara JJ; Morgan TJ
    J Evol Biol; 2014 Mar; 27(3):557-64. PubMed ID: 26230171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antagonistic Responses of Exposure to Sublethal Temperatures: Adaptive Phenotypic Plasticity Coincides with a Reduction in Organismal Performance.
    Gilbert AL; Miles DB
    Am Nat; 2019 Sep; 194(3):344-355. PubMed ID: 31553209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of photoperiodically induced reproductive diapause and cold hardening on the cold tolerance of Drosophila montana.
    Vesala L; Hoikkala A
    J Insect Physiol; 2011 Jan; 57(1):46-51. PubMed ID: 20932841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR; Eller OC; Hahn DA; Morgan TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii.
    Jakobs R; Gariepy TD; Sinclair BJ
    J Insect Physiol; 2015 Aug; 79():1-9. PubMed ID: 25982520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature.
    Loeschcke V; Hoffmann AA
    Am Nat; 2007 Feb; 169(2):175-83. PubMed ID: 17211802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climatic variability and the evolution of insect freeze tolerance.
    Sinclair BJ; Addo-Bediako A; Chown SL
    Biol Rev Camb Philos Soc; 2003 May; 78(2):181-95. PubMed ID: 12803420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster.
    Kelty JD; Lee RE
    J Insect Physiol; 1999 Aug; 45(8):719-726. PubMed ID: 12770302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude?
    Overgaard J; Kristensen TN; Mitchell KA; Hoffmann AA
    Am Nat; 2011 Oct; 178 Suppl 1():S80-96. PubMed ID: 21956094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura.
    MacMillan HA; Schou MF; Kristensen TN; Overgaard J
    Biol Lett; 2016 May; 12(5):. PubMed ID: 27165627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster.
    Czajka MC; Lee RE
    J Exp Biol; 1990 Jan; 148():245-54. PubMed ID: 2106564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.
    Schou MF; Loeschcke V; Kristensen TN
    PLoS One; 2015; 10(6):e0130307. PubMed ID: 26075607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae).
    Nyamukondiwa C; Terblanche JS; Marshall KE; Sinclair BJ
    J Evol Biol; 2011 Sep; 24(9):1927-38. PubMed ID: 21658189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of saturation deficit on desiccation resistance and water balance in seasonal populations of the tropical drosophilid Zaprionus indianus.
    Kalra B; Parkash R
    J Exp Biol; 2016 Oct; 219(Pt 20):3237-3245. PubMed ID: 27591313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory diet influences cold tolerance in a genotype-dependent manner in Drosophila melanogaster.
    Littler AS; Garcia MJ; Teets NM
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Jul; 257():110948. PubMed ID: 33819503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal polyphenism of spotted-wing
    Stockton DG; Wallingford AK; Brind'amore G; Diepenbrock L; Burrack H; Leach H; Isaacs R; Iglesias LE; Liburd O; Drummond F; Ballman E; Guedot C; Van Zoeren J; Loeb GM
    Ecol Evol; 2020 Jul; 10(14):7669-7685. PubMed ID: 32760556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.