These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3198873)

  • 1. Wide-angle one-way wave equations.
    Halpern L; Trefethen LN
    J Acoust Soc Am; 1988 Oct; 84(4):1397-404. PubMed ID: 3198873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the split-step Padé approach to nonlinear field predictions.
    Kamakura T; Nomura H; Clement GT
    Ultrasonics; 2013 Feb; 53(2):432-8. PubMed ID: 23099121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wave and extra-wide-angle parabolic equations for sound propagation in a moving atmosphere.
    Ostashev VE; Wilson DK; Muhlestein MB
    J Acoust Soc Am; 2020 Jun; 147(6):3969. PubMed ID: 32611146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.
    Dagrau F; Rénier M; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extending the Utility of the Parabolic Approximation in Medical Ultrasound Using Wide-Angle Diffraction Modeling.
    Soneson JE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Apr; 64(4):679-687. PubMed ID: 28103552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wide angle and high Mach number parabolic equation.
    Lingevitch JF; Collins MD; Dacol DK; Drob DP; Rogers JC; Siegmann WL
    J Acoust Soc Am; 2002 Feb; 111(2):729-34. PubMed ID: 11865817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical method for describing the paraxial region of finite amplitude sound beams.
    Hamilton MF; Khokhlova VA; Rudenko OV
    J Acoust Soc Am; 1997 Mar; 101(3):1298-308. PubMed ID: 9069621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the sound field above a patchwork of absorbing materials.
    Lanoye R; Vermeir G; Lauriks W; Sgard F; Desmet W
    J Acoust Soc Am; 2008 Feb; 123(2):793-802. PubMed ID: 18247884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave analysis of ray chaos in underwater acoustics.
    Sundaram B; Zaslavsky GM
    Chaos; 1999 Jun; 9(2):483-492. PubMed ID: 12779844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spectrally discretized wide-angle parabolic equation model for simulating acoustic propagation in laterally inhomogeneous oceans.
    Tu H; Wang Y; Zhang Y; Wang X; Liu W
    J Acoust Soc Am; 2023 Jun; 153(6):3334. PubMed ID: 37328947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance-matched absorbers for finite-difference parabolic equation algorithms.
    Yevick D; Thomson DJ
    J Acoust Soc Am; 2000 Mar; 107(3):1226-34. PubMed ID: 10738779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants.
    Lin YT; Collis JM; Duda TF
    J Acoust Soc Am; 2012 Nov; 132(5):EL364-70. PubMed ID: 23145696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An energy-conserving one-way coupled mode propagation model.
    Abawi AT
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):160-7. PubMed ID: 11831790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations: Two-dimensional case.
    Zhang J; Xu Z; Wu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046711. PubMed ID: 19518384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-way approximation for the simulation of weak shock wave propagation in atmospheric flows.
    Gallin LJ; Rénier M; Gaudard E; Farges T; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2014 May; 135(5):2559-70. PubMed ID: 24815240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parabolic equation modeling of high frequency acoustic transmission with an evolving sea surface.
    Senne J; Song A; Badiey M; Smith KB
    J Acoust Soc Am; 2012 Sep; 132(3):1311-8. PubMed ID: 22978859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the sound field of a shallow spherical shell in an infinite baffle.
    Mellow T; Kärkkäinen L
    J Acoust Soc Am; 2007 Jun; 121(6):3527-41. PubMed ID: 17552705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extra-wide-angle parabolic equations in motionless and moving media.
    Ostashev VE; Muhlestein MB; Wilson DK
    J Acoust Soc Am; 2019 Feb; 145(2):1031. PubMed ID: 30823829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional perfectly matched layer for elastic second-order wave equation.
    Li Y; Bou Matar O
    J Acoust Soc Am; 2010 Mar; 127(3):1318-27. PubMed ID: 20329831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The wide-angle equation and its solution through the short-time iterative Lanczos method.
    Campos-Martínez J; Coalson RD
    Appl Opt; 2003 Mar; 42(9):1732-42. PubMed ID: 12665105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.