BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 31989061)

  • 1. Heart regeneration with human pluripotent stem cells: Prospects and challenges.
    Jiang Y; Lian XL
    Bioact Mater; 2020 Mar; 5(1):74-81. PubMed ID: 31989061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells.
    Fonoudi H; Ansari H; Abbasalizadeh S; Larijani MR; Kiani S; Hashemizadeh S; Zarchi AS; Bosman A; Blue GM; Pahlavan S; Perry M; Orr Y; Mayorchak Y; Vandenberg J; Talkhabi M; Winlaw DS; Harvey RP; Aghdami N; Baharvand H
    Stem Cells Transl Med; 2015 Dec; 4(12):1482-94. PubMed ID: 26511653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transplantation of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Regenerative Therapy.
    Silver SE; Barrs RW; Mei Y
    Front Cardiovasc Med; 2021; 8():707890. PubMed ID: 34820426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraining the Pluripotent Fate of Human Embryonic Stem Cells for Tissue Engineering and Cell Therapy - The Turning Point of Cell-Based Regenerative Medicine.
    Parsons XH
    Br Biotechnol J; 2013 Oct; 3(4):424-457. PubMed ID: 24926434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The safety of human pluripotent stem cells in clinical treatment.
    Simonson OE; Domogatskaya A; Volchkov P; Rodin S
    Ann Med; 2015; 47(5):370-80. PubMed ID: 26140342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes.
    Park M; Yoon YS
    Korean Circ J; 2018 Nov; 48(11):974-988. PubMed ID: 30334384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in culture and manipulation of human pluripotent stem cells.
    Qian X; Villa-Diaz LG; Krebsbach PH
    J Dent Res; 2013 Nov; 92(11):956-62. PubMed ID: 23934156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation and Application of Human Pluripotent Stem Cells Derived Cardiovascular Cells for Treatment of Heart Diseases: Promises and Challenges.
    Gao Y; Pu J
    Front Cell Dev Biol; 2021; 9():658088. PubMed ID: 34055788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing cell pluripotency for cardiovascular regenerative medicine.
    Chen H; Zhang A; Wu JC
    Nat Biomed Eng; 2018 Jun; 2(6):392-398. PubMed ID: 31011193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art.
    Talkhabi M; Aghdami N; Baharvand H
    Life Sci; 2016 Jan; 145():98-113. PubMed ID: 26682938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive droplet digital PCR method for detection of residual undifferentiated cells in cardiomyocytes derived from human pluripotent stem cells.
    Kuroda T; Yasuda S; Matsuyama S; Tano K; Kusakawa S; Sawa Y; Kawamata S; Sato Y
    Regen Ther; 2015 Dec; 2():17-23. PubMed ID: 31245455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes.
    van den Heuvel NH; van Veen TA; Lim B; Jonsson MK
    J Mol Cell Cardiol; 2014 Feb; 67():12-25. PubMed ID: 24370890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling.
    Abilez OJ; Tzatzalos E; Yang H; Zhao MT; Jung G; Zöllner AM; Tiburcy M; Riegler J; Matsa E; Shukla P; Zhuge Y; Chour T; Chen VC; Burridge PW; Karakikes I; Kuhl E; Bernstein D; Couture LA; Gold JD; Zimmermann WH; Wu JC
    Stem Cells; 2018 Feb; 36(2):265-277. PubMed ID: 29086457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma-activated medium selectively eliminates undifferentiated human induced pluripotent stem cells.
    Matsumoto R; Shimizu K; Nagashima T; Tanaka H; Mizuno M; Kikkawa F; Hori M; Honda H
    Regen Ther; 2016 Dec; 5():55-63. PubMed ID: 31245502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Developments in Cardiac Regeneration.
    Le TY; Thavapalachandran S; Kizana E; Chong JJ
    Heart Lung Circ; 2017 Apr; 26(4):316-322. PubMed ID: 27916592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiovascular Regeneration via Stem Cells and Direct Reprogramming: A Review.
    Lee CS; Kim J; Cho HJ; Kim HS
    Korean Circ J; 2022 May; 52(5):341-353. PubMed ID: 35502566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells.
    Higuchi A; Ling QD; Kumar SS; Chang Y; Alarfaj AA; Munusamy MA; Murugan K; Hsu ST; Umezawa A
    J Mater Chem B; 2015 Nov; 3(41):8032-8058. PubMed ID: 32262861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Strategies and Challenges for Purification of Cardiomyocytes Derived from Human Pluripotent Stem Cells.
    Ban K; Bae S; Yoon YS
    Theranostics; 2017; 7(7):2067-2077. PubMed ID: 28638487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Pluripotent Stem Cell Culture: Current Status, Challenges, and Advancement.
    Dakhore S; Nayer B; Hasegawa K
    Stem Cells Int; 2018; 2018():7396905. PubMed ID: 30595701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational potential of human embryonic and induced pluripotent stem cells for myocardial repair: insights from experimental models.
    Kong CW; Akar FG; Li RA
    Thromb Haemost; 2010 Jul; 104(1):30-8. PubMed ID: 20539906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.