These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 31989118)
1. Multi-Access Networking with Wireless Ultrasound-Powered Implants. Chang TC; Wang M; Arbabian A IEEE Biomed Circuits Syst Conf; 2019 Oct; 2019():. PubMed ID: 31989118 [TBL] [Abstract][Full Text] [Related]
2. Ultrasonic Implant Localization for Wireless Power Transfer: Active Uplink and Harmonic Backscatter. Wang ML; Chang TC; Arbabian A IEEE Int Ultrason Symp; 2019 Oct; 2019():818-821. PubMed ID: 31988699 [TBL] [Abstract][Full Text] [Related]
3. Wearable wireless power systems for 'ME-BIT' magnetoelectric-powered bio implants. Alrashdan FT; Chen JC; Singer A; Avants BW; Yang K; Robinson JT J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229314 [No Abstract] [Full Text] [Related]
4. MagSonic: Hybrid Magnetic-Ultrasonic Wireless Interrogation of Millimeter-Scale Biomedical Implants With Magnetoelectric Transducer. Hosur S; Kashani Z; Karan SK; Priya S; Kiani M IEEE Trans Biomed Circuits Syst; 2024 Apr; 18(2):383-395. PubMed ID: 37976195 [TBL] [Abstract][Full Text] [Related]
5. A Robust Backscatter Modulation Scheme for Uninterrupted Ultrasonic Powering and Back-Communication of Deep Implants. Holzapfel L; Giagka V IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Sep; PP():. PubMed ID: 39302785 [TBL] [Abstract][Full Text] [Related]
6. An RF-Ultrasound Relay for Adaptive Wireless Powering Across Tissue Interfaces. So E; Yeon P; Chichilnisky EJ; Arbabian A IEEE J Solid-State Circuits; 2022 Nov; 57(11):3429-3441. PubMed ID: 37138581 [TBL] [Abstract][Full Text] [Related]
7. Full-duplex enabled wireless power transfer system via textile for miniaturized IMD. Lee J; Bae B; Kim B; Lee B Biomed Eng Lett; 2022 Aug; 12(3):295-302. PubMed ID: 35875693 [TBL] [Abstract][Full Text] [Related]
8. Floating EMG sensors and stimulators wirelessly powered and operated by volume conduction for networked neuroprosthetics. Becerra-Fajardo L; Krob MO; Minguillon J; Rodrigues C; Welsch C; Tudela-Pi M; Comerma A; Oliveira Barroso F; Schneider A; Ivorra A J Neuroeng Rehabil; 2022 Jun; 19(1):57. PubMed ID: 35672857 [TBL] [Abstract][Full Text] [Related]
9. A Miniature Batteryless Bioelectronic Implant Using One Magnetoelectric Transducer for Wireless Powering and PWM Backscatter Communication. Yu Z; Zou Y; Liao HC; Alrashdan F; Wen Z; Woods JE; Wang W; Robinson JT; Yang K IEEE Trans Biomed Circuits Syst; 2024 Sep; PP():. PubMed ID: 39321009 [TBL] [Abstract][Full Text] [Related]
10. A Magnetic-Balanced Inductive Link for the Simultaneous Uplink Data and Power Telemetry. Gong C; Liu D; Miao Z; Li M Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28767090 [TBL] [Abstract][Full Text] [Related]
11. High Throughput Ultrasonic Multi-implant Readout Using a Machine-Learning Assisted CDMA Receiver. Alamouti SF; Ghanbari MM; Ersumo NT; Muller R Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3289-3292. PubMed ID: 33018707 [TBL] [Abstract][Full Text] [Related]
12. Implant-to-implant wireless networking with metamaterial textiles. Tian X; Zeng Q; Kurt SA; Li RR; Nguyen DT; Xiong Z; Li Z; Yang X; Xiao X; Wu C; Tee BCK; Nikolayev D; Charles CJ; Ho JS Nat Commun; 2023 Jul; 14(1):4335. PubMed ID: 37468458 [TBL] [Abstract][Full Text] [Related]
13. Design and Optimization of Ultrasonic Links With Phased Arrays for Wireless Power Transmission to Biomedical Implants. Kashani Z; Ilham SJ; Kiani M IEEE Trans Biomed Circuits Syst; 2022 Feb; 16(1):64-78. PubMed ID: 34986100 [TBL] [Abstract][Full Text] [Related]
14. Wireless Power Transfer to Millimeter-Sized Nodes Using Airborne Ultrasound. Rekhi AS; Khuri-Yakub BT; Arbabian A IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Oct; 64(10):1526-1541. PubMed ID: 28796616 [TBL] [Abstract][Full Text] [Related]
15. Self-Image-Guided Ultrasonic Wireless Power Transmission to Millimeter-Sized Biomedical Implants. Meng M; Kiani M Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():364-367. PubMed ID: 31945916 [TBL] [Abstract][Full Text] [Related]
16. Ultra-low frequency magnetic energy focusing for highly effective wireless powering of deep-tissue implantable electronic devices. Li Y; Chen Z; Liu Y; Liu Z; Wu T; Zhang Y; Peng L; Huang X; Huang S; Lin X; Xie X; Jiang L Natl Sci Rev; 2024 May; 11(5):nwae062. PubMed ID: 38628571 [TBL] [Abstract][Full Text] [Related]
17. An Implantable Wireless System for Remote Hemodynamic Monitoring of Heart Failure Patients. Besirli M; Ture K; Beghetti M; Maloberti F; Dehollain C; Mattavelli M; Barrettino D IEEE Trans Biomed Circuits Syst; 2023 Aug; 17(4):688-700. PubMed ID: 37155376 [TBL] [Abstract][Full Text] [Related]
18. A wireless batteryless deep-seated implantable ultrasonic pulser-receiver powered by magnetic coupling. Tang SC; Jolesz FA; Clement GT IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1211-21. PubMed ID: 21693403 [TBL] [Abstract][Full Text] [Related]
19. Power-efficient impedance-modulation wireless data links for biomedical implants. Mandal S; Sarpeshkar R IEEE Trans Biomed Circuits Syst; 2008 Dec; 2(4):301-15. PubMed ID: 23853133 [TBL] [Abstract][Full Text] [Related]
20. Full-duplex high-speed indoor optical wireless communication system based on a micro-LED and VCSEL array. Wei Z; Zhang S; Mao S; Wang L; Zhang L; Chen CJ; Wu MC; Dong Y; Wang L; Luo Y; Fu HY Opt Express; 2021 Feb; 29(3):3891-3903. PubMed ID: 33770979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]