BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 31989819)

  • 1. Metabolic Engineering of
    Li T; Liu GS; Zhou W; Jiang M; Ren YH; Tao XY; Liu M; Zhao M; Wang FQ; Gao B; Wei DZ
    J Agric Food Chem; 2020 Feb; 68(7):2132-2138. PubMed ID: 31989819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering
    Wang J; Li Y; Jiang W; Hu J; Gu Z; Xu S; Zhang L; Ding Z; Chen W; Shi G
    J Agric Food Chem; 2023 Jun; 71(25):9804-9814. PubMed ID: 37311098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae.
    Wei LJ; Kwak S; Liu JJ; Lane S; Hua Q; Kweon DH; Jin YS
    Biotechnol Bioeng; 2018 Jul; 115(7):1793-1800. PubMed ID: 29573412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains.
    Han JY; Seo SH; Song JM; Lee H; Choi ES
    J Ind Microbiol Biotechnol; 2018 Apr; 45(4):239-251. PubMed ID: 29396745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Ethanol Assimilation for Efficient Accumulation of Squalene in
    Zhang Y; Wang W; Wei W; Xia L; Gao S; Zeng W; Liu S; Zhou J
    J Agric Food Chem; 2023 Apr; 71(16):6389-6397. PubMed ID: 37052370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration of NADPH Coupled with HMG-CoA Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae.
    Paramasivan K; Mutturi S
    J Agric Food Chem; 2017 Sep; 65(37):8162-8170. PubMed ID: 28845666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway.
    de Jong BW; Shi S; Siewers V; Nielsen J
    Microb Cell Fact; 2014 Mar; 13(1):39. PubMed ID: 24618091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Yarrowia lipolytica for high-level production of squalene.
    Liu Z; Huang M; Chen H; Lu X; Tian Y; Hu P; Zhao Q; Li P; Li C; Ji X; Liu H
    Bioresour Technol; 2024 Feb; 394():130233. PubMed ID: 38141883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing an ethanol utilization pathway in Escherichia coli to produce acetyl-CoA derived compounds.
    Liang H; Ma X; Ning W; Liu Y; Sinskey AJ; Stephanopoulos G; Zhou K
    Metab Eng; 2021 May; 65():223-231. PubMed ID: 33248272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.
    Jo JH; Oh SY; Lee HS; Park YC; Seo JH
    Biotechnol J; 2015 Dec; 10(12):1935-43. PubMed ID: 26470683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.
    Jayakody LN; Horie K; Hayashi N; Kitagaki H
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction.
    Liu GS; Li T; Zhou W; Jiang M; Tao XY; Liu M; Zhao M; Ren YH; Gao B; Wang FQ; Wei DZ
    Metab Eng; 2020 Jan; 57():151-161. PubMed ID: 31711816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overproduction of α-Farnesene in
    Wang J; Jiang W; Liang C; Zhu L; Li Y; Mo Q; Xu S; Chu A; Zhang L; Ding Z; Shi G
    J Agric Food Chem; 2021 Mar; 69(10):3103-3113. PubMed ID: 33683134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae.
    Zhu P; Luo R; Li Y; Chen X
    Microbiol Spectr; 2022 Dec; 10(6):e0227722. PubMed ID: 36354322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing fluxes through the mevalonate pathway in Saccharomyces cerevisiae by engineering the HMGR and β-alanine metabolism.
    Lu S; Zhou C; Guo X; Du Z; Cheng Y; Wang Z; He X
    Microb Biotechnol; 2022 Aug; 15(8):2292-2306. PubMed ID: 35531990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production.
    Qin N; Li L; Ji X; Li X; Zhang Y; Larsson C; Chen Y; Nielsen J; Liu Z
    ACS Synth Biol; 2020 Dec; 9(12):3236-3244. PubMed ID: 33186034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Cell Wall Integrity Enables Enhanced Squalene Production in Yeast.
    Son SH; Kim JE; Oh SS; Lee JY
    J Agric Food Chem; 2020 Apr; 68(17):4922-4929. PubMed ID: 32266810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.
    Ma T; Shi B; Ye Z; Li X; Liu M; Chen Y; Xia J; Nielsen J; Deng Z; Liu T
    Metab Eng; 2019 Mar; 52():134-142. PubMed ID: 30471360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.