These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31989943)

  • 1. Synergistic improvement in the performance of insect odorant receptor based biosensors in the presence of Orco.
    Khadka R; Carraher C; Hamiaux C; Travas-Sejdic J; Kralicek A
    Biosens Bioelectron; 2020 Apr; 153():112040. PubMed ID: 31989943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants.
    Khadka R; Aydemir N; Carraher C; Hamiaux C; Colbert D; Cheema J; Malmström J; Kralicek A; Travas-Sejdic J
    Biosens Bioelectron; 2019 Feb; 126():207-213. PubMed ID: 30415156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data on preparation and characterization of an insect odorant receptor based biosensor.
    Khadka R; Aydemir N; Carraher C; Hamiaux C; Colbert D; Cheema J; Malmström J; Kralicek A; Travas-Sejdic J
    Data Brief; 2018 Dec; 21():2142-2148. PubMed ID: 30533465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of new agonists and antagonists of the insect odorant receptor co-receptor subunit.
    Chen S; Luetje CW
    PLoS One; 2012; 7(5):e36784. PubMed ID: 22590607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalization of quartz crystal microbalances with liposomes containing the N-hydroxysuccinimide ester of palmitic acid.
    Eom S; Yu E; Choi SJ
    Anal Biochem; 2013 Dec; 443(1):78-80. PubMed ID: 23993905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into subunit interactions within the insect olfactory receptor complex using FRET.
    German PF; van der Poel S; Carraher C; Kralicek AV; Newcomb RD
    Insect Biochem Mol Biol; 2013 Feb; 43(2):138-45. PubMed ID: 23196131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of cysteine residues of the insect odorant co-receptor (Orco) from Drosophila melanogaster reveals differential effects on agonist- and odorant-tuning receptor-dependent activation.
    Turner RM; Derryberry SL; Kumar BN; Brittain T; Zwiebel LJ; Newcomb RD; Christie DL
    J Biol Chem; 2014 Nov; 289(46):31837-31845. PubMed ID: 25271160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimerisation of the Drosophila odorant coreceptor Orco.
    Mukunda L; Lavista-Llanos S; Hansson BS; Wicher D
    Front Cell Neurosci; 2014; 8():261. PubMed ID: 25221476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of machine learning to identify novel, behaviorally active antagonists of the insect odorant receptor co-receptor (Orco) subunit.
    Kepchia D; Xu P; Terryn R; Castro A; Schürer SC; Leal WS; Luetje CW
    Sci Rep; 2019 Mar; 9(1):4055. PubMed ID: 30858563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A monoclonal antibody-based immunosensor for detection of Sudan I using electrochemical impedance spectroscopy.
    Xiao F; Zhang N; Gu H; Qian M; Bai J; Zhang W; Jin L
    Talanta; 2011 Mar; 84(1):204-11. PubMed ID: 21315921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calmodulin modulates insect odorant receptor function.
    Mukunda L; Miazzi F; Kaltofen S; Hansson BS; Wicher D
    Cell Calcium; 2014 Apr; 55(4):191-9. PubMed ID: 24661599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of OrX and cAMP-insensitive Orco to the insect olfactory heteromer activity.
    Kolesov DV; Ivanova VO; Sokolinskaya EL; Kost LA; Balaban PM; Lukyanov KA; Nikitin ES; Bogdanov AM
    Mol Biol Rep; 2021 May; 48(5):4549-4561. PubMed ID: 34129187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insect odorant receptor-based biosensors: Current status and prospects.
    Cheema JA; Carraher C; Plank NOV; Travas-Sejdic J; Kralicek A
    Biotechnol Adv; 2021 Dec; 53():107840. PubMed ID: 34606949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtomolar detection of cardiac troponin I using a novel label-free and reagent-free dendrimer enhanced impedimetric immunosensor.
    Akter R; Jeong B; Lee YM; Choi JS; Rahman MA
    Biosens Bioelectron; 2017 May; 91():637-643. PubMed ID: 28107745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical View on Electrochemical Impedance Spectroscopy Using the Ferri/Ferrocyanide Redox Couple at Gold Electrodes.
    Vogt S; Su Q; Gutiérrez-Sánchez C; Nöll G
    Anal Chem; 2016 Apr; 88(8):4383-90. PubMed ID: 26990929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subunit contributions to insect olfactory receptor function: channel block and odorant recognition.
    Nichols AS; Chen S; Luetje CW
    Chem Senses; 2011 Nov; 36(9):781-90. PubMed ID: 21677030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenylthiophenecarboxamide antagonists of the olfactory receptor co-receptor subunit from a mosquito.
    Chen S; Luetje CW
    PLoS One; 2013; 8(12):e84575. PubMed ID: 24358366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Emergence of Insect Odorant Receptor-Based Biosensors.
    Bohbot JD; Vernick S
    Biosensors (Basel); 2020 Mar; 10(3):. PubMed ID: 32192133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers.
    Özcan HM; Sezgintürk MK
    Biotechnol Prog; 2015; 31(3):815-22. PubMed ID: 25683333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the coreceptor Orco in insect olfactory transduction.
    Stengl M; Funk NW
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Nov; 199(11):897-909. PubMed ID: 23824225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.