BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 31989946)

  • 1. Microfabricated bioelectrodes on self-expandable NiTi thin film devices for implants and diagnostic instruments.
    Chluba C; Siemsen K; Bechtold C; Zamponi C; Selhuber-Unkel C; Quandt E; Lima de Miranda R
    Biosens Bioelectron; 2020 Apr; 153():112034. PubMed ID: 31989946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of self-expandable NiTi thin film devices with micro-electrode array for bioelectric sensing, stimulation and ablation.
    Bechtold C; de Miranda RL; Chluba C; Quandt E
    Biomed Microdevices; 2016 Dec; 18(6):106. PubMed ID: 27830452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of surface oxide thickness and structure on the corrosion and nickel elution behavior of nitinol biomedical implants.
    Rosenbloom SN; Kumar P; Lasley C
    J Biomed Mater Res B Appl Biomater; 2021 Sep; 109(9):1334-1343. PubMed ID: 33410251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface finishing of Nitinol for implantable medical devices: A review.
    Mani G; Porter D; Grove K; Collins S; Ornberg A; Shulfer R
    J Biomed Mater Res B Appl Biomater; 2022 Dec; 110(12):2763-2778. PubMed ID: 35729868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys: geometry and body location dependency.
    Toker SM; Canadinc D; Maier HJ; Birer O
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():118-29. PubMed ID: 24433894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NiTi shape memory alloys treated by plasma-polymerized tetrafluoroethylene. A physicochemical and electrochemical characterization.
    Yahia LH; Lombardi S; Piron D; Klemberg-Sapieha JE; Wertheimer MR
    Med Prog Technol; 1996-1997; 21(4):187-93. PubMed ID: 9110276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-scale characterization and biological evaluation of composite surface layers produced under glow discharge conditions on NiTi shape memory alloy for potential cardiological application.
    Chlanda A; Witkowska J; Morgiel J; Nowińska K; Choińska E; Swieszkowski W; Wierzchoń T
    Micron; 2018 Nov; 114():14-22. PubMed ID: 30056255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials.
    Choi C; Lee Y; Cho KW; Koo JH; Kim DH
    Acc Chem Res; 2019 Jan; 52(1):73-81. PubMed ID: 30586292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid a-CNH+TiO
    Witkowska J; Sowińska A; Czarnowska E; Płociński T; Kamiński J; Wierzchoń T
    Nanomedicine (Lond); 2017 Sep; 12(18):2233-2244. PubMed ID: 28818003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure, nickel suppression and mechanical characteristics of electropolished and photoelectrocatalytically oxidized biomedical nickel titanium shape memory alloy.
    Chu CL; Guo C; Sheng XB; Dong YS; Lin PH; Yeung KW; Chu PK
    Acta Biomater; 2009 Jul; 5(6):2238-45. PubMed ID: 19251496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of porous NiTi biomedical alloy by SHS method.
    Saadati A; Aghajani H
    J Mater Sci Mater Med; 2019 Aug; 30(8):92. PubMed ID: 31388767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing.
    Huan Z; Fratila-Apachitei LE; Apachitei I; Duszczyk J
    Nanotechnology; 2014 Feb; 25(5):055602. PubMed ID: 24407375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications.
    Es-Souni M; Es-Souni M; Fischer-Brandies H
    Anal Bioanal Chem; 2005 Feb; 381(3):557-67. PubMed ID: 15660223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting.
    Habijan T; Haberland C; Meier H; Frenzel J; Wittsiepe J; Wuwer C; Greulich C; Schildhauer TA; Köller M
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):419-26. PubMed ID: 25428090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved endothelialization of NiTi alloy by VEGF functionalized nanocoating.
    Shen W; Cai K; Yang Z; Yan Y; Yang W; Liu P
    Colloids Surf B Biointerfaces; 2012 Jun; 94():347-53. PubMed ID: 22387019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of thermomechanical pre-treatment on short- and long-term Ni release from biomedical NiTi.
    Freiberg KE; Bremer-Streck S; Kiehntopf M; Rettenmayr M; Undisz A
    Acta Biomater; 2014 May; 10(5):2290-5. PubMed ID: 24418435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys.
    Shabalovskaya SA
    Biomed Mater Eng; 1996; 6(4):267-89. PubMed ID: 8980835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.