BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 31989946)

  • 41. Behaviour of human endothelial cells on surface modified NiTi alloy.
    Plant SD; Grant DM; Leach L
    Biomaterials; 2005 Sep; 26(26):5359-67. PubMed ID: 15814134
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrochemically Exfoliated High-Quality 2H-MoS
    Zhang P; Yang S; Pineda-Gómez R; Ibarlucea B; Ma J; Lohe MR; Akbar TF; Baraban L; Cuniberti G; Feng X
    Small; 2019 Jun; 15(23):e1901265. PubMed ID: 31034144
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of silver addition on the properties of nickel-titanium alloys for dental application.
    Oh KT; Joo UH; Park GH; Hwang CJ; Kim KN
    J Biomed Mater Res B Appl Biomater; 2006 Feb; 76(2):306-14. PubMed ID: 16161122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Can human mesenchymal stem cells survive on a NiTi implant material subjected to cyclic loading?
    Habijan T; Glogowski T; Kühn S; Pohl M; Wittsiepe J; Greulich C; Eggeler G; Schildhauer TA; Köller M
    Acta Biomater; 2011 Jun; 7(6):2733-9. PubMed ID: 21345390
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Remarkable biocompatibility enhancement of porous NiTi alloys by a new surface modification approach: in-situ nitriding and in vitro and in vivo evaluation.
    Li H; Yuan B; Gao Y; Chung CY; Zhu M
    J Biomed Mater Res A; 2011 Dec; 99(4):544-53. PubMed ID: 21936044
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimization of Electropolishing on NiTi Alloy Stents and Its Influence on Corrosion Behavior.
    Kim J; Park JK; Kim HK; Unnithan AR; Kim CS; Park CH
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2333-339. PubMed ID: 29641158
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flexible bioelectrodes with enhanced wrinkle microstructures for reliable electrochemical modification and neuromodulation in vivo.
    Ji B; Wang M; Ge C; Xie Z; Guo Z; Hong W; Gu X; Wang L; Yi Z; Jiang C; Yang B; Wang X; Li X; Li C; Liu J
    Biosens Bioelectron; 2019 Jun; 135():181-191. PubMed ID: 31022595
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In situ observation of surface oxide layers on medical grade Ni-Ti alloy during straining.
    Undisz A; Schrempel F; Wesch W; Rettenmayr M
    J Biomed Mater Res A; 2009 Mar; 88(4):1000-9. PubMed ID: 18384174
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differences in cytocompatibility, dynamics of the oxide layers' formation, and nickel release between superelastic and thermo-activated nickel-titanium archwires.
    Čolić M; Tomić S; Rudolf R; Marković E; Šćepan I
    J Mater Sci Mater Med; 2016 Aug; 27(8):128. PubMed ID: 27364903
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Density functional theory simulation of titanium migration and reaction with oxygen in the early stages of oxidation of equiatomic NiTi alloy.
    Nolan M; Tofail SA
    Biomaterials; 2010 May; 31(13):3439-48. PubMed ID: 20144474
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent Advances in Encapsulation of Flexible Bioelectronic Implants: Materials, Technologies, and Characterization Methods.
    Mariello M; Kim K; Wu K; Lacour SP; Leterrier Y
    Adv Mater; 2022 Aug; 34(34):e2201129. PubMed ID: 35353928
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microstructure and biocompatibility of titanium oxides produced on nitrided surface layer under glow discharge conditions.
    Czarnowska E; Morgiel J; Ossowski M; Major R; Sowinska A; Wierzchon T
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8917-23. PubMed ID: 22400281
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of cyclic fatigue resistance of novel nickel-titanium rotary instruments.
    Capar ID; Ertas H; Arslan H
    Aust Endod J; 2015 Apr; 41(1):24-8. PubMed ID: 24697976
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface, corrosion and biocompatibility aspects of Nitinol as an implant material.
    Shabalovskaya SA
    Biomed Mater Eng; 2002; 12(1):69-109. PubMed ID: 11847410
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New life for old wires: electrochemical sensor method for neural implants.
    Weltin A; Ganatra D; König K; Joseph K; Hofmann UG; Urban GA; Kieninger J
    J Neural Eng; 2019 Dec; 17(1):016007. PubMed ID: 31597122
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Corrosion behavior of titanium nitride coated Ni-Ti shape memory surgical alloy.
    Starosvetsky D; Gotman I
    Biomaterials; 2001 Jul; 22(13):1853-9. PubMed ID: 11396890
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Corrosion behaviour of Nitinol alloy coated with alkylsilanes and polypyrrole.
    Flamini DO; Saidman SB
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():317-25. PubMed ID: 25280711
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced surface hardness by boron implantation in Nitinol alloy.
    Lee DH; Park B; Saxena A; Serene TP
    J Endod; 1996 Oct; 22(10):543-6. PubMed ID: 9198443
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thin film platinum cuff electrodes for neurostimulation: in vitro approach of safe neurostimulation parameters.
    Mailley S; Hyland M; Mailley P; McLaughlin JA; McAdams ET
    Bioelectrochemistry; 2004 Jun; 63(1-2):359-64. PubMed ID: 15110303
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication and nanoindentation properties of TiN/NiTi thin films and their applications in electrochemical sensing.
    Kumar A; Singh D; Goyal RN; Kaur D
    Talanta; 2009 May; 78(3):964-9. PubMed ID: 19269458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.