These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31989970)

  • 1. Valorisation of waste galvanizing dross: Emphasis on recovery of zinc with zero effluent strategy.
    Sinha S; Choudhari R; Mishra D; Shekhar S; Agrawal A; Sahu KK
    J Environ Manage; 2020 Feb; 256():109985. PubMed ID: 31989970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioavailability of iron in cottonseed meal, ferric sulfate, and two ferrous sulfate by-products of the galvanizing industry.
    Boling SD; Edwards HM; Emmert JL; Biehl RR; Baker DH
    Poult Sci; 1998 Sep; 77(9):1388-92. PubMed ID: 9733127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesizing slow-release fertilizers via mechanochemical processing for potentially recycling the waste ferrous sulfate from titanium dioxide production.
    Li X; Lei Z; Qu J; Li Z; Zhou X; Zhang Q
    J Environ Manage; 2017 Jan; 186(Pt 1):120-126. PubMed ID: 27823903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioavailability of zinc in two zinc sulfate by-products of the galvanizing industry.
    Edwards HM; Boling SD; Emmert JL; Baker DH
    Poult Sci; 1998 Oct; 77(10):1546-9. PubMed ID: 9776064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aluminum recovery as a product with high added value using aluminum hazardous waste.
    David E; Kopac J
    J Hazard Mater; 2013 Oct; 261():316-24. PubMed ID: 23959251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase Stability of Dross Particles in Hot-Dip Zn-55wt%Al-1.6wt%Si Galvanizing Bath.
    Qu D; Gear M; Gu Q; Setargew N; Renshaw W; McDonald S; StJohn D; Nogita K
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methodology for assessing zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide.
    Wedekind KJ; Hortin AE; Baker DH
    J Anim Sci; 1992 Jan; 70(1):178-87. PubMed ID: 1582905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual Recognition and Separation of Hydrated Metal Sulfates [M2(μ-SO4)2(H2O)n, M = Zn(II), Cd(II), Co(II), Mn(II)] by a Ditopic Receptor.
    Ghosh TK; Dutta R; Ghosh P
    Inorg Chem; 2016 Apr; 55(7):3640-52. PubMed ID: 26998549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of aluminum-zinc alloy from 55%Al-Zn dross by supergravity separation.
    Wang L; Wang Z; Zhang S; Wei K; Guo Z
    Rev Sci Instrum; 2022 Jan; 93(1):014502. PubMed ID: 35104949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separative recovery with lime of phosphate and fluoride from an acidic effluent containing H3PO4, HF and/or H2SiF6.
    Gouider M; Feki M; Sayadi S
    J Hazard Mater; 2009 Oct; 170(2-3):962-8. PubMed ID: 19524365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction.
    Mansur MB; Rocha SD; Magalhães FS; Benedetto Jdos S
    J Hazard Mater; 2008 Feb; 150(3):669-78. PubMed ID: 17570579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical and Practical Evaluation of the Feasibility of Zinc Evaporation from the Bottom Zinc Dross as a Valuable Secondary Material.
    Katarína P; Jarmila T; Jaroslav B; Beatrice P
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma assisted synthesis of γ-alumina from waste aluminium dross.
    Saravanakumar R; Ramachandran K; Laly LG; Ananthapadmanabhan PV; Yugeswaran S
    Waste Manag; 2018 Jul; 77():565-575. PubMed ID: 29778404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of iron by jarosite crystallization and separation of vanadium by solvent extraction with extractant 7101 from titanium white waste liquid (TWWL).
    Li W; Niu Z; Zhu X
    Water Sci Technol; 2021 Apr; 83(8):2025-2037. PubMed ID: 33905370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing of rayon waste effluent for the recovery of zinc and separation of calcium using thiophosphinic extractant.
    Jha MK; Kumar V; Bagchi D; Singh RJ; Lee JC
    J Hazard Mater; 2007 Jun; 145(1-2):221-6. PubMed ID: 17140730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective separation of zinc and iron/carbon from blast furnace dust via a hydrometallurgical cooperative leaching method.
    Luo X; Wang C; Shi X; Li X; Wei C; Li M; Deng Z
    Waste Manag; 2022 Feb; 139():116-123. PubMed ID: 34959087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrometallurgical processing of carbon steel EAF dust.
    Havlík T; Vidor e Souza B; Bernardes AM; Schneider IA; Miskufová A
    J Hazard Mater; 2006 Jul; 135(1-3):311-8. PubMed ID: 16442223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron Bioavailability from Ferric Pyrophosphate in Extruded Rice Cofortified with Zinc Sulfate Is Greater than When Cofortified with Zinc Oxide in a Human Stable Isotope Study.
    Hackl L; Zimmermann MB; Zeder C; Parker M; Johns PW; Hurrell RF; Moretti D
    J Nutr; 2017 Mar; 147(3):377-383. PubMed ID: 28148685
    [No Abstract]   [Full Text] [Related]  

  • 19. Hydrolysis of aluminum dross material to achieve zero hazardous waste.
    David E; Kopac J
    J Hazard Mater; 2012 Mar; 209-210():501-9. PubMed ID: 22326245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The recycling of Mn-Zn ferrite wastes through a hydrometallurgical route.
    Li K; Peng C; Jiang K
    J Hazard Mater; 2011 Oct; 194():79-84. PubMed ID: 21872398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.