BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31990074)

  • 1. Possible Mechanism for Synchronized Detection of Weak Magnetic Fields by Nerve Cells.
    Barnes F; Greenebaum B
    Bioelectromagnetics; 2020 Apr; 41(3):213-218. PubMed ID: 31990074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects Induced by a Weak Static Magnetic Field of Different Intensities on HT-1080 Fibrosarcoma Cells.
    Gurhan H; Bruzon R; Kandala S; Greenebaum B; Barnes F
    Bioelectromagnetics; 2021 Apr; 42(3):212-223. PubMed ID: 33735454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of weak radiofrequency and static magnetic fields on key signaling molecules, intracellular pH, membrane potential, and cell growth in HT-1080 fibrosarcoma cells.
    Gurhan H; Barnes F
    Sci Rep; 2023 Aug; 13(1):14223. PubMed ID: 37648766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sonomagnetic Stimulation of Live Cells: Electrophysiologic, Biochemical and Behavioral Responses.
    Hu Y; Wang Y; Chen X; Chen S
    Ultrasound Med Biol; 2019 Nov; 45(11):2970-2983. PubMed ID: 31416657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the intracellular temperature and ROS sensor membrane protein STIM1 as a mechanism underpinning biological effects of low-level low frequency magnetic fields.
    Simkó M; Mattsson MO
    Med Hypotheses; 2019 Jan; 122():68-72. PubMed ID: 30593427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the Cell Membrane Potential and Intracellular Protein Transport by High Magnetic Fields.
    Zablotskii V; Polyakova T; Dejneka A
    Bioelectromagnetics; 2021 Jan; 42(1):27-36. PubMed ID: 33179821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal magnetic fields enhance cytosolic Ca
    Rubio Ayala M; Syrovets T; Hafner S; Zablotskii V; Dejneka A; Simmet T
    Biomaterials; 2018 May; 163():174-184. PubMed ID: 29471128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biological impact of concurrent exposure to metallic nanoparticles and a static magnetic field.
    Comfort KK; Maurer EI; Hussain SM
    Bioelectromagnetics; 2013 Oct; 34(7):500-11. PubMed ID: 23640840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional analysis, modeling, and simulation of the effect of static magnetic fields on neurons.
    Hashemi S; Abdolali A
    Bioelectromagnetics; 2017 Feb; 38(2):128-136. PubMed ID: 27862074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Oxygen Species: Potential Regulatory Molecules in Response to Hypomagnetic Field Exposure.
    Zhang B; Tian L
    Bioelectromagnetics; 2020 Dec; 41(8):573-580. PubMed ID: 32997824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of a perpendicular magnetic field on biological effectiveness of carbon-ion beams.
    Inaniwa T; Suzuki M; Sato S; Noda A; Muramatsu M; Iwata Y; Kanematsu N; Shirai T; Noda K
    Int J Radiat Biol; 2019 Sep; 95(9):1346-1350. PubMed ID: 31140908
    [No Abstract]   [Full Text] [Related]  

  • 12. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte.
    Yost MG; Liburdy RP
    FEBS Lett; 1992 Jan; 296(2):117-22. PubMed ID: 1733766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of strong static magnetic fields on primary cortical neurons.
    Prina-Mello A; Farrell E; Prendergast PJ; Campbell V; Coey JM
    Bioelectromagnetics; 2006 Jan; 27(1):35-42. PubMed ID: 16283651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of weak static magnetic fields on the excitability of a neuron].
    Novikov SM; Maksimov GV; Volkov VV; Shalygin AN
    Biofizika; 2008; 53(3):519-23. PubMed ID: 18634328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does direction of induced electric field or current provide a test of mechanism involved in nerve regeneration?
    Greenebaum B; Sisken BF
    Bioelectromagnetics; 2007 Sep; 28(6):488-92. PubMed ID: 17486600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of static magnetic fields on bioelectric properties of the Br and N1 neurons of snail Helix pomatia.
    Nikolić L; Kartelija G; Nedeljković M
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Dec; 151(4):657-63. PubMed ID: 18760374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of cellular proliferation and enhancement of hydrogen peroxide production in fibrosarcoma cell line by weak radio frequency magnetic fields.
    Castello PR; Hill I; Sivo F; Portelli L; Barnes F; Usselman R; Martino CF
    Bioelectromagnetics; 2014 Dec; 35(8):598-602. PubMed ID: 25251337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static magnetic fields increase cardiomyocyte differentiation of Flk-1+ cells derived from mouse embryonic stem cells via Ca2+ influx and ROS production.
    Bekhite MM; Figulla HR; Sauer H; Wartenberg M
    Int J Cardiol; 2013 Aug; 167(3):798-808. PubMed ID: 22465345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic currents of isolated retinal pacemaker neurons: projected daily phase differences and selective enhancement by a phase-shifting neurotransmitter.
    Barnes S; Jacklet JW
    J Neurophysiol; 1997 Jun; 77(6):3075-84. PubMed ID: 9212258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells.
    Calabrò E; Condello S; Currò M; Ferlazzo N; Caccamo D; Magazù S; Ientile R
    Bioelectromagnetics; 2013 Dec; 34(8):618-29. PubMed ID: 24217848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.