These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 31990166)

  • 1. Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling.
    Chae D; Kim M; Jung PH; Son S; Seo J; Liu Y; Lee BJ; Lee H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8073-8081. PubMed ID: 31990166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling.
    Chae D; Lim H; So S; Son S; Ju S; Kim W; Rho J; Lee H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21119-21126. PubMed ID: 33926186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Daytime Radiative Cooler and Near-Ideal Selective Emitter Enabled by Transparent Sapphire Substrate.
    Chae D; Son S; Liu Y; Lim H; Lee H
    Adv Sci (Weinh); 2020 Oct; 7(19):2001577. PubMed ID: 33042765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Thin Polymer Coating as a Selective Thermal Emitter for Passive Daytime Radiative Cooling.
    Banik U; Agrawal A; Meddeb H; Sergeev O; Reininghaus N; Götz-Köhler M; Gehrke K; Stührenberg J; Vehse M; Sznajder M; Agert C
    ACS Appl Mater Interfaces; 2021 May; 13(20):24130-24137. PubMed ID: 33974398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single Nanoporous MgHPO
    Huang X; Li N; Wang J; Liu D; Xu J; Zhang Z; Zhong M
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2252-2258. PubMed ID: 31886998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling.
    Zhang J; Zhou Z; Tang H; Xing J; Quan J; Liu J; Yu J; Hu M
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14132-14140. PubMed ID: 33724770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrawhite BaSO
    Li X; Peoples J; Yao P; Ruan X
    ACS Appl Mater Interfaces; 2021 May; 13(18):21733-21739. PubMed ID: 33856776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-Linked Porous Polymeric Coating without a Metal-Reflective Layer for Sub-Ambient Radiative Cooling.
    Son S; Liu Y; Chae D; Lee H
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57832-57839. PubMed ID: 33345542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.
    Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R
    Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive radiative cooling below ambient air temperature under direct sunlight.
    Raman AP; Anoma MA; Zhu L; Rephaeli E; Fan S
    Nature; 2014 Nov; 515(7528):540-4. PubMed ID: 25428501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable and Flexible Electrospun Film for Daytime Subambient Radiative Cooling.
    Jing W; Zhang S; Zhang W; Chen Z; Zhang C; Wu D; Gao Y; Zhu H
    ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34132091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multilayer Emitter Close to Ideal Solar Reflectance for Efficient Daytime Radiative Cooling.
    Zhu Y; Wang D; Fang C; He P; Ye YH
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31323830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Solution-Processed Inorganic Emitter with High Spectral Selectivity for Efficient Subambient Radiative Cooling in Hot Humid Climates.
    Lin C; Li Y; Chi C; Kwon YS; Huang J; Wu Z; Zheng J; Liu G; Tso CY; Chao CYH; Huang B
    Adv Mater; 2022 Mar; 34(12):e2109350. PubMed ID: 35038775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Daytime radiative cooler using porous TiO
    Zahir M; Benlattar M
    Appl Opt; 2020 Oct; 59(30):9400-9408. PubMed ID: 33104657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual-selective thermal emitter with enhanced subambient radiative cooling performance.
    Wu X; Li J; Xie F; Wu XE; Zhao S; Jiang Q; Zhang S; Wang B; Li Y; Gao D; Li R; Wang F; Huang Y; Zhao Y; Zhang Y; Li W; Zhu J; Zhang R
    Nat Commun; 2024 Jan; 15(1):815. PubMed ID: 38280849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-sustained and Insulated Radiative/Evaporative Cooler for Daytime Subambient Passive Cooling.
    Yu L; Huang Y; Zhao Y; Rao Z; Li W; Chen Z; Chen M
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6513-6522. PubMed ID: 38273444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Pattern over a Thick Silica Film to Realize Passive Radiative Cooling.
    Liu Y; Li J; Liu C
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34070026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic-Structure Colored Radiative Coolers for Daytime Subambient Cooling.
    Yu S; Zhang Q; Wang Y; Lv Y; Ma R
    Nano Lett; 2022 Jun; 22(12):4925-4932. PubMed ID: 35686917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.