These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31990278)

  • 21. Special Magnetic Catalyst with Lignin-Reduced Au-Pd Nanoalloy.
    Han G; Li X; Li J; Wang X; Zhang YS; Sun R
    ACS Omega; 2017 Aug; 2(8):4938-4945. PubMed ID: 31457772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic activity of nanoalloys from gold and palladium.
    Kaiser J; Leppert L; Welz H; Polzer F; Wunder S; Wanderka N; Albrecht M; Lunkenbein T; Breu J; Kümmel S; Lu Y; Ballauff M
    Phys Chem Chem Phys; 2012 May; 14(18):6487-95. PubMed ID: 22456829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microwave-assisted synthesis of palladium nanoparticles intercalated nitrogen doped reduced graphene oxide and their electrocatalytic activity for direct-ethanol fuel cells.
    Kumar R; da Silva ETSG; Singh RK; Savu R; Alaferdov AV; Fonseca LC; Carossi LC; Singh A; Khandka S; Kar KK; Alves OL; Kubota LT; Moshkalev SA
    J Colloid Interface Sci; 2018 Apr; 515():160-171. PubMed ID: 29335183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient and Selective CO
    Huang W; Wang Y; Liu J; Wang Y; Liu D; Dong J; Jia N; Yang L; Liu C; Liu Z; Liu B; Yan Q
    Small; 2022 Apr; 18(16):e2107885. PubMed ID: 35261150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anodic Oxidation of Butan-1-ol on Reduced Graphene Oxide-Supported Pd-Ag Nanoalloy for Fuel Cell Application.
    Mahajan A; Banik S; Majumdar D; Bhattacharya SK
    ACS Omega; 2019 Mar; 4(3):4658-4670. PubMed ID: 31459653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane.
    Zhang S; Kang P; Bakir M; Lapides AM; Dares CJ; Meyer TJ
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15809-14. PubMed ID: 26668386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and Characterization of Nitrogen Doped Reduced Graphene Oxide (N-rGO) Supported PtCu Anode Catalysts for Direct Methanol Fuel Cell.
    Baronia R; Goel J; Gautam G; Singh D; Singhal SK
    J Nanosci Nanotechnol; 2019 Jul; 19(7):3832-3843. PubMed ID: 30764941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lattice Strain and Surface Activity of Ternary Nanoalloys under the Propane Oxidation Condition.
    Kareem H; Maswadeh Y; Wu ZP; Leff AC; Cheng HW; Shan S; Wang S; Robinson R; Caracciolo D; Langrock A; Mackie DM; Tran DT; Petkov V; Zhong CJ
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11435-11447. PubMed ID: 35195398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrocatalytic enhancement of platinum and palladium metal on polydopamine reduced graphene oxide support for alcohol oxidation.
    Themsirimongkon S; Ounnunkad K; Saipanya S
    J Colloid Interface Sci; 2018 Nov; 530():98-112. PubMed ID: 29966849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size-controllable synthesis of trimetallic RhPdPt island-shaped nanoalloys with enhanced electrocatalytic performance for ethanol oxidation in alkaline medium.
    Huang DB; He PL; Yuan Q; Wang X
    Chem Asian J; 2015 Mar; 10(3):608-13. PubMed ID: 25620545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of open-mouthed, yolk-shell Au@AgPd nanoparticles with access to interior surfaces for enhanced electrocatalysis.
    Shi Q; Zhang P; Li Y; Xia H; Wang D; Tao X
    Chem Sci; 2015 Jul; 6(7):4350-4357. PubMed ID: 29218206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monodispersed sub-5.0 nm PtCu nanoalloys as enhanced bifunctional electrocatalysts for oxygen reduction reaction and ethanol oxidation reaction.
    Liu T; Wang K; Yuan Q; Shen Z; Wang Y; Zhang Q; Wang X
    Nanoscale; 2017 Mar; 9(9):2963-2968. PubMed ID: 28210732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles.
    Akbayrak S
    J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sonogashira couplings on the surface of montmorillonite-supported Pd/Cu nanoalloys.
    Xu W; Sun H; Yu B; Zhang G; Zhang W; Gao Z
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20261-8. PubMed ID: 25315209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deviations from Vegard's law and evolution of the electrocatalytic activity and stability of Pt-based nanoalloys inside fuel cells by in operando X-ray spectroscopy and total scattering.
    Petkov V; Maswadeh Y; Vargas JA; Shan S; Kareem H; Wu ZP; Luo J; Zhong CJ; Shastri S; Kenesei P
    Nanoscale; 2019 Mar; 11(12):5512-5525. PubMed ID: 30860531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt.
    Neurock M; Janik M; Wieckowski A
    Faraday Discuss; 2008; 140():363-78; discussion 417-37. PubMed ID: 19213327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor.
    Mao R; Zhao X; Lan H; Liu H; Qu J
    Water Res; 2015 Jun; 77():1-12. PubMed ID: 25834955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduced graphene oxide supported palladium nanoparticles via photoassisted citrate reduction for enhanced electrocatalytic activities.
    Huang YX; Xie JF; Zhang X; Xiong L; Yu HQ
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15795-801. PubMed ID: 25153308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AgPd nanoparticles for electrocatalytic CO
    Cui M; Johnson G; Zhang Z; Li S; Hwang S; Zhang X; Zhang S
    Nanoscale; 2020 Jul; 12(26):14068-14075. PubMed ID: 32582900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale.
    Shan S; Petkov V; Prasai B; Wu J; Joseph P; Skeete Z; Kim E; Mott D; Malis O; Luo J; Zhong CJ
    Nanoscale; 2015 Dec; 7(45):18936-48. PubMed ID: 26404795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.