BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31990289)

  • 1. Heterogeneous networks integration for disease-gene prioritization with node kernels.
    Tran VD; Sperduti A; Backofen R; Costa F
    Bioinformatics; 2020 May; 36(9):2649-2656. PubMed ID: 31990289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification in biological networks with hypergraphlet kernels.
    Lugo-Martinez J; Zeiberg D; Gaudelet T; Malod-Dognin N; Przulj N; Radivojac P
    Bioinformatics; 2021 May; 37(7):1000-1007. PubMed ID: 32886115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ensembling graph attention networks for human microbe-drug association prediction.
    Long Y; Wu M; Liu Y; Kwoh CK; Luo J; Li X
    Bioinformatics; 2020 Dec; 36(Suppl_2):i779-i786. PubMed ID: 33381844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scSGL: kernelized signed graph learning for single-cell gene regulatory network inference.
    Karaaslanli A; Saha S; Aviyente S; Maiti T
    Bioinformatics; 2022 May; 38(11):3011-3019. PubMed ID: 35451460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers.
    Cai R; Chen X; Fang Y; Wu M; Hao Y
    Bioinformatics; 2020 Aug; 36(16):4458-4465. PubMed ID: 32221609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NIAPU: network-informed adaptive positive-unlabeled learning for disease gene identification.
    Stolfi P; Mastropietro A; Pasculli G; Tieri P; Vergni D
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36727493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random walk with restart on multiplex and heterogeneous biological networks.
    Valdeolivas A; Tichit L; Navarro C; Perrin S; Odelin G; Levy N; Cau P; Remy E; Baudot A
    Bioinformatics; 2019 Feb; 35(3):497-505. PubMed ID: 30020411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-supervised network inference using simulated gene expression dynamics.
    Nguyen P; Braun R
    Bioinformatics; 2018 Apr; 34(7):1148-1156. PubMed ID: 29186340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurately modeling biased random walks on weighted networks using node2vec.
    Liu R; Hirn M; Krishnan A
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36688699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactogeneous: disease gene prioritization using heterogeneous networks and full topology scores.
    Gonçalves JP; Francisco AP; Moreau Y; Madeira SC
    PLoS One; 2012; 7(11):e49634. PubMed ID: 23185389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks.
    Fu H; Huang F; Liu X; Qiu Y; Zhang W
    Bioinformatics; 2022 Jan; 38(2):426-434. PubMed ID: 34499148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. XGDAG: explainable gene-disease associations via graph neural networks.
    Mastropietro A; De Carlo G; Anagnostopoulos A
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37531293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.
    Valentini G; Paccanaro A; Caniza H; Romero AE; Re M
    Artif Intell Med; 2014 Jun; 61(2):63-78. PubMed ID: 24726035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A network of networks approach for modeling interconnected brain tissue-specific networks.
    Kawakubo H; Matsui Y; Kushima I; Ozaki N; Shimamura T
    Bioinformatics; 2019 Sep; 35(17):3092-3101. PubMed ID: 30649245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential network analysis by simultaneously considering changes in gene interactions and gene expression.
    Tu JJ; Ou-Yang L; Zhu Y; Yan H; Qin H; Zhang XF
    Bioinformatics; 2021 Dec; 37(23):4414-4423. PubMed ID: 34245246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. graphkernels: R and Python packages for graph comparison.
    Sugiyama M; Ghisu ME; Llinares-López F; Borgwardt K
    Bioinformatics; 2018 Feb; 34(3):530-532. PubMed ID: 29028902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPSILON: an eQTL prioritization framework using similarity measures derived from local networks.
    Verbeke LP; Cloots L; Demeester P; Fostier J; Marchal K
    Bioinformatics; 2013 May; 29(10):1308-16. PubMed ID: 23595663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-type biomedical named entity recognition with deep multi-task learning.
    Wang X; Zhang Y; Ren X; Zhang Y; Zitnik M; Shang J; Langlotz C; Han J
    Bioinformatics; 2019 May; 35(10):1745-1752. PubMed ID: 30307536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scuba: scalable kernel-based gene prioritization.
    Zampieri G; Tran DV; Donini M; Navarin N; Aiolli F; Sperduti A; Valle G
    BMC Bioinformatics; 2018 Jan; 19(1):23. PubMed ID: 29370760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.