These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31990289)

  • 21. Joint reconstruction of multiple gene networks by simultaneously capturing inter-tumor and intra-tumor heterogeneity.
    Tu JJ; Ou-Yang L; Yan H; Zhang XF; Qin H
    Bioinformatics; 2020 May; 36(9):2755-2762. PubMed ID: 31971577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GENECI: A novel evolutionary machine learning consensus-based approach for the inference of gene regulatory networks.
    Segura-Ortiz A; García-Nieto J; Aldana-Montes JF; Navas-Delgado I
    Comput Biol Med; 2023 Mar; 155():106653. PubMed ID: 36803795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series.
    Rubiolo M; Milone DH; Stegmayer G
    Bioinformatics; 2018 Apr; 34(7):1253-1260. PubMed ID: 29182723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-performance single-cell gene regulatory network inference at scale: the Inferelator 3.0.
    Skok Gibbs C; Jackson CA; Saldi GA; Tjärnberg A; Shah A; Watters A; De Veaux N; Tchourine K; Yi R; Hamamsy T; Castro DM; Carriero N; Gorissen BL; Gresham D; Miraldi ER; Bonneau R
    Bioinformatics; 2022 Apr; 38(9):2519-2528. PubMed ID: 35188184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unsupervised multiple kernel learning for heterogeneous data integration.
    Mariette J; Villa-Vialaneix N
    Bioinformatics; 2018 Mar; 34(6):1009-1015. PubMed ID: 29077792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PAFway: pairwise associations between functional annotations in biological networks and pathways.
    Mahjoub M; Ezer D
    Bioinformatics; 2020 Dec; 36(19):4963-4964. PubMed ID: 32678900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EnGRaiN: a supervised ensemble learning method for recovery of large-scale gene regulatory networks.
    Aluru M; Shrivastava H; Chockalingam SP; Shivakumar S; Aluru S
    Bioinformatics; 2022 Feb; 38(5):1312-1319. PubMed ID: 34888624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HOGMMNC: a higher order graph matching with multiple network constraints model for gene-drug regulatory modules identification.
    Chen J; Peng H; Han G; Cai H; Cai J
    Bioinformatics; 2019 Feb; 35(4):602-610. PubMed ID: 30052773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AptRank: an adaptive PageRank model for protein function prediction on   bi-relational graphs.
    Jiang B; Kloster K; Gleich DF; Gribskov M
    Bioinformatics; 2017 Jun; 33(12):1829-1836. PubMed ID: 28200073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-quality gene/disease embedding in a multi-relational heterogeneous graph after a joint matrix/tensor decomposition.
    Zhou K; Zhang S; Wang Y; Cohen KB; Kim JD; Luo Q; Yao X; Zhou X; Xia J
    J Biomed Inform; 2022 Feb; 126():103973. PubMed ID: 34995810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes.
    Himmelstein DS; Baranzini SE
    PLoS Comput Biol; 2015 Jul; 11(7):e1004259. PubMed ID: 26158728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactive network visualization in Jupyter notebooks: visJS2jupyter.
    Rosenthal SB; Len J; Webster M; Gary A; Birmingham A; Fisch KM
    Bioinformatics; 2018 Jan; 34(1):126-128. PubMed ID: 28968701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. iSOM-GSN: an integrative approach for transforming multi-omic data into gene similarity networks via self-organizing maps.
    Fatima N; Rueda L
    Bioinformatics; 2020 Aug; 36(15):4248-4254. PubMed ID: 32407457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. deepNF: deep network fusion for protein function prediction.
    Gligorijevic V; Barot M; Bonneau R
    Bioinformatics; 2018 Nov; 34(22):3873-3881. PubMed ID: 29868758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of single and module-based methods for modeling gene regulatory networks.
    Hernaez M; Blatti C; Gevaert O
    Bioinformatics; 2020 Jan; 36(2):558-567. PubMed ID: 31287491
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Network-based multi-task learning models for biomarker selection and cancer outcome prediction.
    Wang Z; He Z; Shah M; Zhang T; Fan D; Zhang W
    Bioinformatics; 2020 Mar; 36(6):1814-1822. PubMed ID: 31688914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A learning-based framework for miRNA-disease association identification using neural networks.
    Peng J; Hui W; Li Q; Chen B; Hao J; Jiang Q; Shang X; Wei Z
    Bioinformatics; 2019 Nov; 35(21):4364-4371. PubMed ID: 30977780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated recognition of functional compound-protein relationships in literature.
    Döring K; Qaseem A; Becer M; Li J; Mishra P; Gao M; Kirchner P; Sauter F; Telukunta KK; Moumbock AFA; Thomas P; Günther S
    PLoS One; 2020; 15(3):e0220925. PubMed ID: 32126064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.