These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31990289)

  • 61. Detection of Network Motif Based on a Novel Graph Canonization Algorithm from Transcriptional Regulation Networks.
    Hu J; Shang X
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29232861
    [TBL] [Abstract][Full Text] [Related]  

  • 62. ThETA: transcriptome-driven efficacy estimates for gene-based TArget discovery.
    Failli M; Paananen J; Fortino V
    Bioinformatics; 2020 Aug; 36(14):4214-4216. PubMed ID: 32437556
    [TBL] [Abstract][Full Text] [Related]  

  • 63. iScore: a novel graph kernel-based function for scoring protein-protein docking models.
    Geng C; Jung Y; Renaud N; Honavar V; Bonvin AMJJ; Xue LC
    Bioinformatics; 2020 Jan; 36(1):112-121. PubMed ID: 31199455
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing.
    Wang Z; Zhou M; Arnold C
    Bioinformatics; 2020 Jul; 36(Suppl_1):i525-i533. PubMed ID: 32657387
    [TBL] [Abstract][Full Text] [Related]  

  • 65. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.
    Filatov G; Bauwens B; Kertész-Farkas A
    Bioinformatics; 2018 Oct; 34(19):3281-3288. PubMed ID: 29741583
    [TBL] [Abstract][Full Text] [Related]  

  • 66. edge2vec: Representation learning using edge semantics for biomedical knowledge discovery.
    Gao Z; Fu G; Ouyang C; Tsutsui S; Liu X; Yang J; Gessner C; Foote B; Wild D; Ding Y; Yu Q
    BMC Bioinformatics; 2019 Jun; 20(1):306. PubMed ID: 31238875
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds.
    Lei H; Akhtar N; Mian A
    IEEE Trans Pattern Anal Mach Intell; 2021 Oct; 43(10):3664-3680. PubMed ID: 32248091
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biological Random Walks: multi-omics integration for disease gene prioritization.
    Gentili M; Martini L; Sponziello M; Becchetti L
    Bioinformatics; 2022 Sep; 38(17):4145-4152. PubMed ID: 35792834
    [TBL] [Abstract][Full Text] [Related]  

  • 69. BiXGBoost: a scalable, flexible boosting-based method for reconstructing gene regulatory networks.
    Zheng R; Li M; Chen X; Wu FX; Pan Y; Wang J
    Bioinformatics; 2019 Jun; 35(11):1893-1900. PubMed ID: 30395189
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Protease target prediction via matrix factorization.
    Marini S; Vitali F; Rampazzi S; Demartini A; Akutsu T
    Bioinformatics; 2019 Mar; 35(6):923-929. PubMed ID: 30169576
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Detecting spatially co-expressed gene clusters with functional coherence by graph-regularized convolutional neural network.
    Song T; Markham KK; Li Z; Muller KE; Greenham K; Kuang R
    Bioinformatics; 2022 Feb; 38(5):1344-1352. PubMed ID: 34864909
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Smart computational exploration of stochastic gene regulatory network models using human-in-the-loop semi-supervised learning.
    Wrede F; Hellander A
    Bioinformatics; 2019 Dec; 35(24):5199-5206. PubMed ID: 31141124
    [TBL] [Abstract][Full Text] [Related]  

  • 74. BaiHui: cross-species brain-specific network built with hundreds of hand-curated datasets.
    Li HD; Bai T; Sandford E; Burmeister M; Guan Y
    Bioinformatics; 2019 Jul; 35(14):2486-2488. PubMed ID: 30521009
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Identifying potential association on gene-disease network via dual hypergraph regularized least squares.
    Yang H; Ding Y; Tang J; Guo F
    BMC Genomics; 2021 Aug; 22(1):605. PubMed ID: 34372777
    [TBL] [Abstract][Full Text] [Related]  

  • 76. IndeCut evaluates performance of network motif discovery algorithms.
    Ansariola M; Megraw M; Koslicki D
    Bioinformatics; 2018 May; 34(9):1514-1521. PubMed ID: 29236975
    [TBL] [Abstract][Full Text] [Related]  

  • 77. CANTATA-prediction of missing links in Boolean networks using genetic programming.
    Müssel C; Ikonomi N; Werle SD; Weidner FM; Maucher M; Schwab JD; Kestler HA
    Bioinformatics; 2022 Oct; 38(21):4893-4900. PubMed ID: 36094334
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A large-scale benchmark of gene prioritization methods.
    Guala D; Sonnhammer ELL
    Sci Rep; 2017 Apr; 7():46598. PubMed ID: 28429739
    [TBL] [Abstract][Full Text] [Related]  

  • 79. SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles.
    Papili Gao N; Ud-Dean SMM; Gandrillon O; Gunawan R
    Bioinformatics; 2018 Jan; 34(2):258-266. PubMed ID: 28968704
    [TBL] [Abstract][Full Text] [Related]  

  • 80. DeepT3: deep convolutional neural networks accurately identify Gram-negative bacterial type III secreted effectors using the N-terminal sequence.
    Xue L; Tang B; Chen W; Luo J
    Bioinformatics; 2019 Jun; 35(12):2051-2057. PubMed ID: 30407530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.