BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31990439)

  • 1. Organelle specific simultaneous Raman/green fluorescence protein microspectroscopy for living cell physicochemical studies.
    Wattanavichean N; Nishida I; Ando M; Kawamukai M; Yamamoto T; Hamaguchi HO
    J Biophotonics; 2020 Apr; 13(4):e201960163. PubMed ID: 31990439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy.
    Huang YS; Karashima T; Yamamoto M; Hamaguchi HO
    Biochemistry; 2005 Aug; 44(30):10009-19. PubMed ID: 16042377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra.
    Ando M; Hamaguchi HO
    J Biomed Opt; 2014 Jan; 19(1):011016. PubMed ID: 24108582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behaviors of the "raman spectroscopic signature of life" in single living fission yeast cells under different nutrient, stress, and atmospheric conditions.
    Huang YS; Nakatsuka T; Hamaguchi HO
    Appl Spectrosc; 2007 Dec; 61(12):1290-4. PubMed ID: 18198019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo probing of the temperature responses of intracellular biomolecules in yeast cells by label-free Raman microspectroscopy.
    Chiu YF; Huang CK; Shigeto S
    Chembiochem; 2013 May; 14(8):1001-5. PubMed ID: 23630156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photobleaching of the "Raman spectroscopic signature of life" and mitochondrial activity in rho- budding yeast cells.
    Onogi C; Hamaguchi HO
    J Phys Chem B; 2009 Aug; 113(31):10942-5. PubMed ID: 19601610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying anti-oxidative properties of inclusion complexes of α-lipoic acid with γ-cyclodextrin in single living fission yeast by confocal Raman microspectroscopy.
    Noothalapati H; Ikarashi R; Iwasaki K; Nishida T; Kaino T; Yoshikiyo K; Terao K; Nakata D; Ikuta N; Ando M; Hamaguchi HO; Kawamukai M; Yamamoto T
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():237-243. PubMed ID: 29433856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Casting new physicochemical light on the fundamental biological processes in single living cells by using Raman microspectroscopy.
    Kaliaperumal V; Hamaguchi HO
    Chem Rec; 2012 Dec; 12(6):567-80. PubMed ID: 23129551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring metabolic pathways in vivo by a combined approach of mixed stable isotope-labeled Raman microspectroscopy and multivariate curve resolution analysis.
    Noothalapati H; Shigeto S
    Anal Chem; 2014 Aug; 86(15):7828-34. PubMed ID: 24975289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber.
    Kano H; Hamaguchi HO
    Opt Express; 2006 Apr; 14(7):2798-804. PubMed ID: 19516414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and analysis of the green fluorescent protein gene in the fission yeast Schizosaccharomyces pombe.
    Atkins D; Izant JG
    Curr Genet; 1995 Nov; 28(6):585-8. PubMed ID: 8593691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1064 nm Dispersive Raman Microspectroscopy and Optical Trapping of Pharmaceutical Aerosols.
    Gallimore PJ; Davidson NM; Kalberer M; Pope FD; Ward AD
    Anal Chem; 2018 Aug; 90(15):8838-8844. PubMed ID: 29956916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman scattering microscopy.
    Nan X; Potma EO; Xie XS
    Biophys J; 2006 Jul; 91(2):728-35. PubMed ID: 16632501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy.
    Kano H; Hamaguchi HO
    Opt Express; 2005 Feb; 13(4):1322-7. PubMed ID: 19495005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells.
    Rizzuto R; Brini M; Pizzo P; Murgia M; Pozzan T
    Curr Biol; 1995 Jun; 5(6):635-42. PubMed ID: 7552174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers.
    Tang H; Yao H; Wang G; Wang Y; Li YQ; Feng M
    Opt Express; 2007 Oct; 15(20):12708-16. PubMed ID: 19550539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organelle specific imaging in live cells and immuno-labeling using resonance Raman probe.
    Li Y; Heo J; Lim CK; Pliss A; Kachynski AV; Kuzmin AN; Kim S; Prasad PN
    Biomaterials; 2015 Jun; 53():25-31. PubMed ID: 25890703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of an IGF-1R kinase regulatory phosphatase using the fission yeast Schizosaccharomyces pombe and a GFP tagged IGF-1R in mammalian cells.
    Buckley DA; Loughran G; Murphy G; Fennelly C; O'Connor R
    Mol Pathol; 2002 Feb; 55(1):46-54. PubMed ID: 11836447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D
    Hekmatara M; Heidari Baladehi M; Ji Y; Xu J
    Anal Chem; 2021 Feb; 93(4):2125-2134. PubMed ID: 33435684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering.
    Chen BC; Sung J; Wu X; Lim SH
    J Biomed Opt; 2011 Feb; 16(2):021112. PubMed ID: 21361675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.