These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31990570)

  • 1. Nanoscale Mapping of the Double Layer Potential at the Graphene-Electrolyte Interface.
    Strelcov E; Arble C; Guo H; Hoskins BD; Yulaev A; Vlassiouk IV; Zhitenev NB; Tselev A; Kolmakov A
    Nano Lett; 2020 Feb; 20(2):1336-1344. PubMed ID: 31990570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review.
    Collins L; Kilpatrick JI; Kalinin SV; Rodriguez BJ
    Rep Prog Phys; 2018 Aug; 81(8):086101. PubMed ID: 29990308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AC Kelvin Probe Force Microscopy Enables Charge Mapping in Water.
    Hackl T; Schitter G; Mesquida P
    ACS Nano; 2022 Nov; 16(11):17982-17990. PubMed ID: 36215653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of interfacial ion structuring on range and magnitude of electric double layer, hydration, and adhesive interactions between mica surfaces in 0.05-3 M Li⁺ and Cs⁺ electrolyte solutions.
    Baimpos T; Shrestha BR; Raman S; Valtiner M
    Langmuir; 2014 Apr; 30(15):4322-32. PubMed ID: 24655312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kelvin probe force microscopy in liquid using electrochemical force microscopy.
    Collins L; Jesse S; Kilpatrick JI; Tselev A; Okatan MB; Kalinin SV; Rodriguez BJ
    Beilstein J Nanotechnol; 2015; 6():201-14. PubMed ID: 25671164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsed Force Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Xu XG
    ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of Electric Double Layer Capacitance Using Dielectrophoresis-Based Particle Manipulation.
    Zhang S; Zhang Z; Chen S; Zhu R
    Anal Chem; 2021 Apr; 93(14):5882-5889. PubMed ID: 33797871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Part of the concentrations boundary layers in creations the electrical properties of cell containing two polymeric membranes and binary electrolyte solutions].
    Werner H; Slezak A
    Polim Med; 2007; 37(4):3-19. PubMed ID: 18572875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Range Electrification of an Air/Electrolyte Interface and Probing Potential of Zero Charge by Conductive Amplitude-Modulated Atomic Force Microscopy.
    Dinh TD; Jang JW; Hwang S
    Anal Chem; 2023 Feb; 95(5):2901-2908. PubMed ID: 36691706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing Electrified Liquid-Solid Interfaces with Scanning Electron Microscopy.
    Guo H; Yulaev A; Strelcov E; Tselev A; Arble C; Vladar AE; Villarrubia JS; Kolmakov A
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56650-56657. PubMed ID: 33327058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal-spatial-resolved mapping of the electrical double layer changes by surface plasmon resonance imaging.
    Luo X; Deng S; Wang P
    RSC Adv; 2018 Aug; 8(50):28266-28274. PubMed ID: 35542477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared Nanospectroscopy at the Graphene-Electrolyte Interface.
    Lu YH; Larson JM; Baskin A; Zhao X; Ashby PD; Prendergast D; Bechtel HA; Kostecki R; Salmeron M
    Nano Lett; 2019 Aug; 19(8):5388-5393. PubMed ID: 31306028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Electrical Double Layer Force between Spherical Particles Which Are Partially Submerged in Water.
    Zigelman A; Manor O
    Langmuir; 2020 May; 36(18):4942-4954. PubMed ID: 32275443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a liquid flow on the forces between charged solid surfaces and the non-equilibrium electric double layer.
    McNamee CE
    Adv Colloid Interface Sci; 2019 Apr; 266():21-33. PubMed ID: 30831437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices.
    Axt A; Hermes IM; Bergmann VW; Tausendpfund N; Weber SAL
    Beilstein J Nanotechnol; 2018; 9():1809-1819. PubMed ID: 29977714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical Double Layer of Supported Atomically Thin Materials.
    Kwon SS; Choi J; Heiranian M; Kim Y; Chang WJ; Knapp PM; Wang MC; Kim JM; Aluru NR; Park WI; Nam S
    Nano Lett; 2019 Jul; 19(7):4588-4593. PubMed ID: 31203634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging the carrier photogeneration in nanoscale phase segregated organic heterojunctions by Kelvin probe force microscopy.
    Spadafora EJ; Demadrille R; Ratier B; Grévin B
    Nano Lett; 2010 Sep; 10(9):3337-42. PubMed ID: 20677769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiparametric Kelvin Probe Force Microscopy for the Simultaneous Mapping of Surface Potential and Nanomechanical Properties.
    Xie H; Zhang H; Hussain D; Meng X; Song J; Sun L
    Langmuir; 2017 Mar; 33(11):2725-2733. PubMed ID: 28263608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.