These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1100 related articles for article (PubMed ID: 31990907)
1. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest. Liu L; Basso B PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907 [TBL] [Abstract][Full Text] [Related]
2. Soil Carbon Response to Projected Climate Change in the US Western Corn Belt. Wienhold BJ; Jin VL; Schmer MR; Varvel GE J Environ Qual; 2018 Jul; 47(4):704-709. PubMed ID: 30025056 [TBL] [Abstract][Full Text] [Related]
3. No-tillage enhances soil water storage, grain yield and water use efficiency in dryland wheat ( Adil M; Lu S; Yao Z; Zhang C; Lu H; Bashir S; Maitah M; Gul I; Razzaq S; Qiu L Funct Plant Biol; 2024 May; 51():. PubMed ID: 38701238 [TBL] [Abstract][Full Text] [Related]
4. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat. Zhang T; Lin X; Sassenrath GF Sci Total Environ; 2015 Mar; 508():331-42. PubMed ID: 25497355 [TBL] [Abstract][Full Text] [Related]
5. Simulating Soil Organic Carbon Responses to Cropping Intensity, Tillage, and Climate Change in Pacific Northwest Dryland. Gollany HT; Polumsky RW J Environ Qual; 2018 Jul; 47(4):625-634. PubMed ID: 30025049 [TBL] [Abstract][Full Text] [Related]
6. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO Jin Z; Zhuang Q; Wang J; Archontoulis SV; Zobel Z; Kotamarthi VR Glob Chang Biol; 2017 Jul; 23(7):2687-2704. PubMed ID: 28063186 [TBL] [Abstract][Full Text] [Related]
7. Simulated Soil Organic Carbon Changes in Maryland Are Affected by Tillage, Climate Change, and Crop Yield. Cavigelli MA; Nash PR; Gollany HT; Rasmann C; Polumsky RW; Le AN; Conklin AE J Environ Qual; 2018 Jul; 47(4):588-595. PubMed ID: 30025031 [TBL] [Abstract][Full Text] [Related]
8. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Lobell DB; Roberts MJ; Schlenker W; Braun N; Little BB; Rejesus RM; Hammer GL Science; 2014 May; 344(6183):516-9. PubMed ID: 24786079 [TBL] [Abstract][Full Text] [Related]
9. Monitoring temperature sensitivity of soil organic carbon decomposition under maize-wheat cropping systems in semi-arid India. Sandeep S; Manjaiah KM; Mayadevi MR; Singh AK Environ Monit Assess; 2016 Aug; 188(8):451. PubMed ID: 27387189 [TBL] [Abstract][Full Text] [Related]
10. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis. Rettie FM; Gayler S; K D Weber T; Tesfaye K; Streck T PLoS One; 2022; 17(1):e0262951. PubMed ID: 35061854 [TBL] [Abstract][Full Text] [Related]
11. Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India. Parihar CM; Parihar MD; Sapkota TB; Nanwal RK; Singh AK; Jat SL; Nayak HS; Mahala DM; Singh LK; Kakraliya SK; Stirling CM; Jat ML Sci Total Environ; 2018 Nov; 640-641():1382-1392. PubMed ID: 30021305 [TBL] [Abstract][Full Text] [Related]
12. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya. Gummadi S; Kadiyala MDM; Rao KPC; Athanasiadis I; Mulwa R; Kilavi M; Legesse G; Amede T PLoS One; 2020; 15(11):e0241147. PubMed ID: 33151967 [TBL] [Abstract][Full Text] [Related]
13. Simulated Soil Organic Carbon Response to Tillage, Yield, and Climate Change in the Southeastern Coastal Plains. Nash PR; Gollany HT; Novak JM; Bauer PJ; Hunt PG; Karlen DL J Environ Qual; 2018 Jul; 47(4):663-673. PubMed ID: 30025032 [TBL] [Abstract][Full Text] [Related]
14. Simulated Soil Organic Carbon Responses to Crop Rotation, Tillage, and Climate Change in North Dakota. Nash PR; Gollany HT; Liebig MA; Halvorson JJ; Archer DW; Tanaka DL J Environ Qual; 2018 Jul; 47(4):654-662. PubMed ID: 30025045 [TBL] [Abstract][Full Text] [Related]
15. Simulating US agriculture in a modern Dust Bowl drought. Glotter M; Elliott J Nat Plants; 2016 Dec; 3():16193. PubMed ID: 27941818 [TBL] [Abstract][Full Text] [Related]
16. Characterizing drought stress and trait influence on maize yield under current and future conditions. Harrison MT; Tardieu F; Dong Z; Messina CD; Hammer GL Glob Chang Biol; 2014 Mar; 20(3):867-78. PubMed ID: 24038882 [TBL] [Abstract][Full Text] [Related]
17. Tradeoffs between Maize Silage Yield and Nitrate Leaching in a Mediterranean Nitrate-Vulnerable Zone under Current and Projected Climate Scenarios. Basso B; Giola P; Dumont B; Migliorati Mde A; Cammarano D; Pruneddu G; Giunta F PLoS One; 2016; 11(1):e0146360. PubMed ID: 26784113 [TBL] [Abstract][Full Text] [Related]
18. Rotary tillage in rotation with plowing tillage improves soil properties and crop yield in a wheat-maize cropping system. Zhang L; Wang J; Fu G; Zhao Y PLoS One; 2018; 13(6):e0198193. PubMed ID: 29902193 [TBL] [Abstract][Full Text] [Related]
19. Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe. Elsgaard L; Børgesen CD; Olesen JE; Siebert S; Ewert F; Peltonen-Sainio P; Rötter RP; Skjelvåg AO Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1514-26. PubMed ID: 22827234 [TBL] [Abstract][Full Text] [Related]
20. Strategic tillage achieves lower carbon footprints with higher carbon accumulation and grain yield in a wheat-maize cropping system. Liu QY; Xu CT; Han SW; Li XX; Kan ZR; Zhao X; Zhang HL Sci Total Environ; 2021 Dec; 798():149220. PubMed ID: 34315054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]