BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31990959)

  • 1. Climate sensitivity of Cryptomeria japonica in two contrasting environments: Perspectives from QTL mapping.
    Mori H; Yamashita K; Saiki ST; Matsumoto A; Ujino-Ihara T
    PLoS One; 2020; 15(1):e0228278. PubMed ID: 31990959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Analysis of Yield in Europe: Allelic Effects Vary with Drought and Heat Scenarios.
    Millet EJ; Welcker C; Kruijer W; Negro S; Coupel-Ledru A; Nicolas SD; Laborde J; Bauland C; Praud S; Ranc N; Presterl T; Tuberosa R; Bedo Z; Draye X; Usadel B; Charcosset A; Van Eeuwijk F; Tardieu F
    Plant Physiol; 2016 Oct; 172(2):749-764. PubMed ID: 27436830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotype-by-environment interaction and genetic dissection of heartwood color in Cryptomeria japonica based on multiple common gardens and quantitative trait loci mapping.
    Mori H; Ueno S; Ujino-Ihara T; Fujiwara T; Yamashita K; Kanetani S; Endo R; Matsumoto A; Uchiyama K; Yoshida T; Sakai Y; Moriguchi Y; Kusano R; Tsumura Y
    PLoS One; 2022; 17(7):e0270522. PubMed ID: 35793335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of genome-wide association studies for identifying markers for wood property and male strobili traits in Cryptomeria japonica.
    Uchiyama K; Iwata H; Moriguchi Y; Ujino-Ihara T; Ueno S; Taguchi Y; Tsubomura M; Mishima K; Iki T; Watanabe A; Futamura N; Shinohara K; Tsumura Y
    PLoS One; 2013; 8(11):e79866. PubMed ID: 24260312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mapping of quantitative trait loci for drought tolerance in maize plants.
    Rahman H; Pekic S; Lazic-Jancic V; Quarrie SA; Shah SM; Pervez A; Shah MM
    Genet Mol Res; 2011 May; 10(2):889-901. PubMed ID: 21644206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic differentiation and evolutionary adaptation in Cryptomeria japonica.
    Tsumura Y; Uchiyama K; Moriguchi Y; Kimura MK; Ueno S; Ujino-Ihara T
    G3 (Bethesda); 2014 Oct; 4(12):2389-402. PubMed ID: 25320072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of soil water content and elevated CO
    Mochizuki T; Amagai T; Tani A
    Sci Total Environ; 2018 Sep; 634():900-908. PubMed ID: 29660884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Verification of our empirical understanding of the physiology and ecology of two contrasting plantation species using a trait database.
    Osone Y; Hashimoto S; Kenzo T
    PLoS One; 2021; 16(11):e0254599. PubMed ID: 34843472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments.
    Li Z; Mu P; Li C; Zhang H; Li Z; Gao Y; Wang X
    Theor Appl Genet; 2005 May; 110(7):1244-52. PubMed ID: 15765223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits.
    Fan Y; Shabala S; Ma Y; Xu R; Zhou M
    BMC Genomics; 2015 Feb; 16(1):43. PubMed ID: 25651931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping QTLs for grain yield components in wheat under heat stress.
    Bhusal N; Sarial AK; Sharma P; Sareen S
    PLoS One; 2017; 12(12):e0189594. PubMed ID: 29261718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet.
    Yadav RS; Sehgal D; Vadez V
    J Exp Bot; 2011 Jan; 62(2):397-408. PubMed ID: 20819788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wood structural differences between northern and southern beech provenances growing at a moderate site.
    Eilmann B; Sterck F; Wegner L; de Vries SM; von Arx G; Mohren GM; den Ouden J; Sass-Klaassen U
    Tree Physiol; 2014 Aug; 34(8):882-93. PubMed ID: 25163729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.).
    Tahmasebi S; Heidari B; Pakniyat H; McIntyre CL
    Genome; 2017 Jan; 60(1):26-45. PubMed ID: 27996306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of QTL hot spots for malting quality in two elite breeding lines with distinct tolerance to abiotic stress.
    Kochevenko A; Jiang Y; Seiler C; Surdonja K; Kollers S; Reif JC; Korzun V; Graner A
    BMC Plant Biol; 2018 Jun; 18(1):106. PubMed ID: 29866039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species.
    Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A
    PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative trait loci associated with drought tolerance at reproductive stage in rice.
    Lanceras JC; Pantuwan G; Jongdee B; Toojinda T
    Plant Physiol; 2004 May; 135(1):384-99. PubMed ID: 15122029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species characteristics and intraspecific variation in growth and photosynthesis of Cryptomeria japonica under elevated O3 and CO2.
    Hiraoka Y; Iki T; Nose M; Tobita H; Yazaki K; Watanabe A; Fujisawa Y; Kitao M
    Tree Physiol; 2017 Jun; 37(6):733-743. PubMed ID: 28369644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in annual transcriptome dynamics of a clone of Japanese cedar (Cryptomeria japonica D. Don) planted under different climate conditions.
    Nose M; Hanaoka S; Fukatsu E; Kurita M; Miura M; Hiraoka Y; Iki T; Chigira O; Mishima K; Takahashi M; Watanabe A
    PLoS One; 2023; 18(2):e0277797. PubMed ID: 36795783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback.
    Jump AS; Ruiz-Benito P; Greenwood S; Allen CD; Kitzberger T; Fensham R; Martínez-Vilalta J; Lloret F
    Glob Chang Biol; 2017 Sep; 23(9):3742-3757. PubMed ID: 28135022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.