These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Modification of phosphorothioate oligonucleotides yields potent analogs with minimal toxicity for antisense experiments in the CNS. Peng Ho S; Livanov V; Zhang W; Li J; Lesher T Brain Res Mol Brain Res; 1998 Nov; 62(1):1-11. PubMed ID: 9795101 [TBL] [Abstract][Full Text] [Related]
9. Delivery of Antisense Oligonucleotides to the Mouse Brain by Intracerebroventricular Injections. Metz T; Kuijper EC; van Roon-Mom WMC Methods Mol Biol; 2022; 2434():333-341. PubMed ID: 35213029 [TBL] [Abstract][Full Text] [Related]
10. Albumin-Binding Fatty Acid-Modified Gapmer Antisense Oligonucleotides for Modulation of Pharmacokinetics. Cai Y; Lou C; Wengel J; Howard KA Methods Mol Biol; 2020; 2176():163-174. PubMed ID: 32865790 [TBL] [Abstract][Full Text] [Related]
11. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2'-O-methyl RNA, phosphorothioates and small interfering RNA. Grünweller A; Wyszko E; Bieber B; Jahnel R; Erdmann VA; Kurreck J Nucleic Acids Res; 2003 Jun; 31(12):3185-93. PubMed ID: 12799446 [TBL] [Abstract][Full Text] [Related]
12. Fatty Acid-Modified Gapmer Antisense Oligonucleotide and Serum Albumin Constructs for Pharmacokinetic Modulation. Hvam ML; Cai Y; Dagnæs-Hansen F; Nielsen JS; Wengel J; Kjems J; Howard KA Mol Ther; 2017 Jul; 25(7):1710-1717. PubMed ID: 28641935 [TBL] [Abstract][Full Text] [Related]
14. Helix-stabilizing compounds CC-1065 and U-71,184 bind to RNA-DNA and DNA-DNA duplexes containing modified internucleotide linkages and stabilize duplexes against thermal melting. Kim DY; Shih DS; Cho DY; Swenson DH Antisense Res Dev; 1995; 5(1):49-57. PubMed ID: 7542048 [TBL] [Abstract][Full Text] [Related]
15. Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides. Agrawal S Biochim Biophys Acta; 1999 Dec; 1489(1):53-68. PubMed ID: 10806997 [TBL] [Abstract][Full Text] [Related]
16. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Kasuya T; Hori S; Watanabe A; Nakajima M; Gahara Y; Rokushima M; Yanagimoto T; Kugimiya A Sci Rep; 2016 Jul; 6():30377. PubMed ID: 27461380 [TBL] [Abstract][Full Text] [Related]
17. Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gapmer antisense oligonucleotides. Østergaard ME; De Hoyos CL; Wan WB; Shen W; Low A; Berdeja A; Vasquez G; Murray S; Migawa MT; Liang XH; Swayze EE; Crooke ST; Seth PP Nucleic Acids Res; 2020 Feb; 48(4):1691-1700. PubMed ID: 31980820 [TBL] [Abstract][Full Text] [Related]
18. Nonenzymatic sequence-specific cleavage of duplex DNA via triple-helix formation by homopyrimidine phosphorothioate oligonucleotides. Tsukahara S; Suzuki J; Ushijima K; Takai K; Takaku H Bioorg Med Chem; 1996 Dec; 4(12):2219-24. PubMed ID: 9022985 [TBL] [Abstract][Full Text] [Related]
19. Discovering antisense reagents by hybridization of RNA to oligonucleotide arrays. Southern EM; Milner N; Mir KU Ciba Found Symp; 1997; 209():38-44; discussion 44-6. PubMed ID: 9383567 [TBL] [Abstract][Full Text] [Related]
20. Targeting BACE with small inhibitory nucleic acids - a future for Alzheimer's disease therapy? Nawrot B Acta Biochim Pol; 2004; 51(2):431-44. PubMed ID: 15218540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]