These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 31990995)
1. Lateral roots, in addition to adventitious roots, form a barrier to radial oxygen loss in Zea nicaraguensis and a chromosome segment introgression line in maize. Pedersen O; Nakayama Y; Yasue H; Kurokawa Y; Takahashi H; Heidi Floytrup A; Omori F; Mano Y; David Colmer T; Nakazono M New Phytol; 2021 Jan; 229(1):94-105. PubMed ID: 31990995 [TBL] [Abstract][Full Text] [Related]
2. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697 [TBL] [Abstract][Full Text] [Related]
3. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3. Watanabe K; Takahashi H; Sato S; Nishiuchi S; Omori F; Malik AI; Colmer TD; Mano Y; Nakazono M Plant Cell Environ; 2017 Feb; 40(2):304-316. PubMed ID: 27762444 [TBL] [Abstract][Full Text] [Related]
4. QTLs for constitutive aerenchyma from Zea nicaraguensis improve tolerance of maize to root-zone oxygen deficiency. Gong F; Takahashi H; Omori F; Wang W; Mano Y; Nakazono M J Exp Bot; 2019 Nov; 70(21):6475-6487. PubMed ID: 31587072 [TBL] [Abstract][Full Text] [Related]
5. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays). Mano Y; Omori F Ann Bot; 2013 Oct; 112(6):1125-39. PubMed ID: 23877074 [TBL] [Abstract][Full Text] [Related]
6. Exogenous abscisic acid induces the formation of a suberized barrier to radial oxygen loss in adventitious roots of barley (Hordeum vulgare). Shiono K; Matsuura H Ann Bot; 2024 May; 133(7):931-940. PubMed ID: 38448365 [TBL] [Abstract][Full Text] [Related]
7. Prevention of Radial Oxygen Loss Is Associated With Exodermal Suberin Along Adventitious Roots of Annual Wild Species of Ejiri M; Shiono K Front Plant Sci; 2019; 10():254. PubMed ID: 30915090 [TBL] [Abstract][Full Text] [Related]
8. Root Cortex Provides a Venue for Gas-Space Formation and Is Essential for Plant Adaptation to Waterlogging. Yamauchi T; Abe F; Tsutsumi N; Nakazono M Front Plant Sci; 2019; 10():259. PubMed ID: 31024577 [TBL] [Abstract][Full Text] [Related]
9. Anatomical and biochemical characterisation of a barrier to radial O Kotula L; Schreiber L; Colmer TD; Nakazono M Funct Plant Biol; 2017 Sep; 44(9):845-857. PubMed ID: 32480613 [TBL] [Abstract][Full Text] [Related]
10. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Shiono K; Ogawa S; Yamazaki S; Isoda H; Fujimura T; Nakazono M; Colmer TD Ann Bot; 2011 Jan; 107(1):89-99. PubMed ID: 21097947 [TBL] [Abstract][Full Text] [Related]
11. A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia. Ejiri M; Fukao T; Miyashita T; Shiono K Breed Sci; 2021 Feb; 71(1):40-50. PubMed ID: 33762875 [TBL] [Abstract][Full Text] [Related]
12. Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Garthwaite AJ; Bothmer RV; Colmer TD Funct Plant Biol; 2003 Sep; 30(8):875-889. PubMed ID: 32689072 [TBL] [Abstract][Full Text] [Related]
13. Water uptake by roots of Hordeum marinum: formation of a barrier to radial O2 loss does not affect root hydraulic conductivity. Garthwaite AJ; Steudle E; Colmer TD J Exp Bot; 2006; 57(3):655-64. PubMed ID: 16410258 [TBL] [Abstract][Full Text] [Related]
14. Asymmetric auxin distribution establishes a contrasting pattern of aerenchyma formation in the nodal roots of Ning J; Yamauchi T; Takahashi H; Omori F; Mano Y; Nakazono M Front Plant Sci; 2023; 14():1133009. PubMed ID: 37152158 [TBL] [Abstract][Full Text] [Related]
15. Abscisic acid is required for exodermal suberization to form a barrier to radial oxygen loss in the adventitious roots of rice (Oryza sativa). Shiono K; Yoshikawa M; Kreszies T; Yamada S; Hojo Y; Matsuura T; Mori IC; Schreiber L; Yoshioka T New Phytol; 2022 Jan; 233(2):655-669. PubMed ID: 34725822 [TBL] [Abstract][Full Text] [Related]
16. Rice acclimation to soil flooding: Low concentrations of organic acids can trigger a barrier to radial oxygen loss in roots. Colmer TD; Kotula L; Malik AI; Takahashi H; Konnerup D; Nakazono M; Pedersen O Plant Cell Environ; 2019 Jul; 42(7):2183-2197. PubMed ID: 30989660 [TBL] [Abstract][Full Text] [Related]
17. Some Accessions of Amazonian Wild Rice ( Ejiri M; Sawazaki Y; Shiono K Plants (Basel); 2020 Jul; 9(7):. PubMed ID: 32668711 [TBL] [Abstract][Full Text] [Related]
18. The barrier to radial oxygen loss protects roots against hydrogen sulphide intrusion and its toxic effect. Peralta Ogorek LL; Takahashi H; Nakazono M; Pedersen O New Phytol; 2023 Jun; 238(5):1825-1837. PubMed ID: 36928886 [TBL] [Abstract][Full Text] [Related]
19. Low nitrate under waterlogging triggers exodermal suberization to form a barrier to radial oxygen loss in rice roots. Shiono K; Ejiri M; Sawazaki Y; Egishi Y; Tsunoda T Plant Physiol; 2024 Sep; 196(1):551-563. PubMed ID: 38761404 [TBL] [