BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31991198)

  • 1. Aflatoxin contaminated degree detection by hyperspectral data using band index.
    Zhongzhi H; Limiao D
    Food Chem Toxicol; 2020 Mar; 137():111159. PubMed ID: 31991198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Aflatoxin B
    Zhang H; Jia B; Lu Y; Yoon SC; Ni X; Zhuang H; Guo X; Le W; Wang W
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatio-temporal distribution patterns and quantitative detection of aflatoxin B
    Guo Z; Zhang J; Dong H; Sun J; Huang J; Li S; Ma C; Guo Y; Sun X
    Food Chem; 2023 Oct; 424():136441. PubMed ID: 37244182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Hyperspectral optimum wavelengths and Fisher discrimination analysis to distinguish different concentrations of aflatoxin on corn kernel surface].
    Chu X; Wang W; Zhang LD; Guo LH; Feldner P; Heitschmidt G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1811-5. PubMed ID: 25269286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated with Aspergillus flavus spores.
    Yao H; Hruska Z; Kincaid R; Brown R; Cleveland T; Bhatnagar D
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May; 27(5):701-9. PubMed ID: 20221935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of spectral-spatial characteristics in shortwave infrared hyperspectral images to classify and identify fungi-contaminated peanuts.
    Qiao X; Jiang J; Qi X; Guo H; Yuan D
    Food Chem; 2017 Apr; 220():393-399. PubMed ID: 27855916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oil Adulteration Identification by Hyperspectral Imaging Using QHM and ICA.
    Han Z; Wan J; Deng L; Liu K
    PLoS One; 2016; 11(1):e0146547. PubMed ID: 26820311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral intelligent detection for aflatoxin B1 via contrastive learning based on Siamese network.
    Zhu H; Zhao Y; Gu Q; Zhao L; Yang R; Han Z
    Food Chem; 2024 Aug; 449():139171. PubMed ID: 38604026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of aflatoxin and Aspergillus sp. contamination in raw peanuts and peanut-based products along this supply chain in Malaysia.
    Norlia M; Nor-Khaizura MAR; Selamat J; Abu Bakar F; Radu S; Chin CK
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Sep; 35(9):1787-1802. PubMed ID: 29912639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pixel-level aflatoxin detecting in maize based on feature selection and hyperspectral imaging.
    Gao J; Ni J; Wang D; Deng L; Li J; Han Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118269. PubMed ID: 32217452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Qualitative and quantitative detection of aflatoxins B1 in maize kernels with fluorescence hyperspectral imaging based on the combination method of boosting and stacking.
    Wang Z; An T; Wang W; Fan S; Chen L; Tian X
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Aug; 296():122679. PubMed ID: 37011441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging.
    Zhao HT; Feng YZ; Chen W; Jia GF
    Meat Sci; 2019 May; 151():75-81. PubMed ID: 30716565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of surface-enhanced Raman spectroscopy for rapid detection of aflatoxins in maize.
    Lee KM; Herrman TJ; Bisrat Y; Murray SC
    J Agric Food Chem; 2014 May; 62(19):4466-74. PubMed ID: 24773134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of aflatoxin degradation during peanut roasting.
    Martins LM; Sant'Ana AS; Iamanaka BT; Berto MI; Pitt JI; Taniwaki MH
    Food Res Int; 2017 Jul; 97():178-183. PubMed ID: 28578039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Identification of Pummelo Cultivars Based on Hyperspectral Imaging Technology].
    Li XL; Yi SL; He SL; Lü Q; Xie RJ; Zheng YQ; Deng L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2639-43. PubMed ID: 26669182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative determination of aflatoxin B1 concentration in acetonitrile by chemometric methods using terahertz spectroscopy.
    Ge H; Jiang Y; Lian F; Zhang Y; Xia S
    Food Chem; 2016 Oct; 209():286-92. PubMed ID: 27173565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Critical Review of Aflatoxin Contamination of Peanuts in Malawi and Zambia: The Past, Present, and Future.
    Njoroge SMC
    Plant Dis; 2018 Dec; 102(12):2394-2406. PubMed ID: 30351226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Visible-Near-Infrared (Vis-NIR) Spectroscopy to Detect Aflatoxin B
    Tao F; Yao H; Hruska Z; Liu Y; Rajasekaran K; Bhatnagar D
    Appl Spectrosc; 2019 Apr; 73(4):415-423. PubMed ID: 30700102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aflatoxin rapid detection based on hyperspectral with 1D-convolution neural network in the pixel level.
    Gao J; Zhao L; Li J; Deng L; Ni J; Han Z
    Food Chem; 2021 Oct; 360():129968. PubMed ID: 34082378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.).
    Yu B; Huai D; Huang L; Kang Y; Ren X; Chen Y; Zhou X; Luo H; Liu N; Chen W; Lei Y; Pandey MK; Sudini H; Varshney RK; Liao B; Jiang H
    BMC Genet; 2019 Mar; 20(1):32. PubMed ID: 30866805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.